
DroidVault: A Trusted Data Vault for Android
Devices

Xiaolei Li∗, Hong Hu∗, Guangdong Bai†, Yaoqi Jia∗, Zhenkai Liang∗, Prateek Saxena∗

∗Department of Computer Science, National University of Singapore
†Graduate School for Integrative Sciences and Engineering, National University of Singapore

Abstract—Mobile OSes and applications form a large, complex
and vulnerability-prone software stack. In such an environment,
security techniques to strongly protect sensitive data in mobile de-
vices are important and challenging. To address such challenges,
we introduce the concept of the trusted data vault, a small trusted
engine that securely manages the storage and usage of sensitive
data in an untrusted mobile device. In this paper, we design and
build DroidVault— the first realization of a trusted data vault on
the Android platform. DroidVault establishes a secure channel
between data owners and data users while allowing data owners
to enforce strong control over the sensitive data with a minimal
trusted computing base (TCB). We prototype DroidVault via
the novel use of hardware security features of ARM processors,
i.e., TrustZone. Our evaluation demonstrates its functionality for
processing sensitive data and its practicality for adoption in the
real world.

I. INTRODUCTION

The rapid adoption of mobile devices poses an imminent
threat to the sensitive data in enterprises and cloud services.
Mobile OSes and applications form a large, complex and
vulnerability-prone software stack, which is witnessing a sharp
rise in malware and OS vulnerabilities [1]. In addition, Android
users often install untrusted applications or make modifications
(e.g., via “rooting”) to the Android OS to bypass restrictions
set by vendors, thereby increasing the risk of compromising
the software stack. This gives rise to a practical dilemma
for data owners: should they trust users’ devices and permit
the use of sensitive data in devices outside their control, or
should they enforce strong control over the sensitive data by
banning untrusted devices. Data owners often choose to blindly
trust the commodity mobile OSes and user-installed mobile
applications.

Trusted Data Vault. Ideally, if mobile platforms can pro-
vide mechanisms for data owners to control the usage of
the sensitive data, strong data protection can be achieved
in existing mobile devices. To enable this, we introduce the
concept of trusted data vault — a small trusted engine that data
owners can trust to securely manage the storage and usage of
the sensitive data in untrusted devices. A trusted data vault
must balance the misaligned incentives between data users
and data owners — data users want unfettered control of the
applications and the OS, while data owners need strong control
over the sensitive information.

Existing work [2]–[5] has been dedicated into building
an isolated secure environment in the mobile devices. On-
board credentials platform [2] designs an architecture for the

credential management via a hardware-assisted secure envi-
ronment. Other work [3]–[5] implements the Mobile Trusted
Module, a secure element specified by Trusted Computing
Group, through either software-based or hardware-based ap-
proaches. However, these solutions either only support limited
functionality than secure storage and verification, or rely on a
large trusted computing base (TCB) to perform operations on
sensitive data.

Approach. In this work, we propose DroidVault, a trusted
data vault for Android devices. DroidVault ensures that all
the sensitive data remains encrypted throughout its lifetime in
the untrusted Android device, and also supports an execution
environment for trusted code to operate on the encrypted data.
To extend the trust from the data owner’s workspace (e.g., the
enterprise workspace or cloud storage services) to the mobile
client, we expose four important services in DroidVault: secure
network communication, secure data storage, secure input and
output, secure data processing environment.

The main challenge in designing a practical data vault is to
enable limited but sufficient functionality with a minimal TCB.
Existing secure hardware platforms, such as ARM TrustZone,
TPM, M-shield, JavaCard and NGSCB [6], only provide
limited available resources for secure environment, such as
limited memory and storage, and thus to make a practical
deployment, the TCB of the data vault must be kept as small
as possible.

We prototype DroidVault as a small trusted hardware-
assisted engine through the novel use of hardware security
features supported by recent ARM CPUs, namely the ARM
TrustZone. It is being widely adopted in ARM-based em-
bedded devices. Unlike software virtualization mechanisms
which multiplex two executions on the same CPU, the ARM
TrustZone architecture isolates the CPU core and MMU sub-
system at the hardware level and creates two environments
with different security privilege levels. It supports red/green
systems [6]–[8], which partition hardware resources into a
highly-constrained trusted (green) environment and a general-
purpose untrusted (red) environment. Therefore, it enables
DroidVault to co-exist with a completely untrusted Android
software stack. We prototype DroidVault in the trusted environ-
ment which holds a higher security privilege but only limited
resources, and thus DroidVault behaves as a tiny trusted engine
for handling sensitive data operations in the same device that
hosts a separate untrusted Android OS.

To significantly minimize the TCB of DroidVault, we lever-
age the network and file system modules from the untrusted

Android OS. In our implementation, DroidVault has a TCB
of about 12K lines of unoptimized code — this is within the
range of systems which can be formally checked by existing
verification tools [9]. Note that as a prototype for now, we
only use a serial console and a hardware keyboard to simulate
the secure display and input. We have verified that the USB
touchscreen driver in the Android source code has only 1.1K
lines of code (LOC). Therefore, the TCB will not increase
too much if including the touchscreen driver in the future
implementation.

In summary, we claim the following contributions:

• We propose the concept of a trusted data vault and
design DroidVault, a usable data vault for the Android
platform. To the best of our knowledge, DroidVault is
the first end-to-end platform that guarantees sensitive
data protection for data owners (note that, we refer
data owners to remote data-hosting servers instead of
end users) in untrusted Android devices.

• Many commercial vendors build virtualization systems
on top of the ARM TrustZone. In contrast, we build
a red/green system without relying on virtualization,
instead on partitioning. Further, previous commercial
systems do not give details of their security design and
implementation. Our work is the first in this aspect to
our knowledge.

• DroidVault finds a sweet spot between allowing full-
fledged functionality and having a small TCB for
strong security. We propose a novel combination of
using ARM TrustZone primitives and reusing a large
fraction of the untrusted Android stack. DroidVault
has a small TCB of roughly 12K LOC (only 0.046%
of the standalone Android OS).

• We evaluate the applicability of DroidVault to work on
the protected data without sacrificing the data privacy
and integrity. We also test the performance overhead
of file downloads. The results show that the overhead
grows linearly with the file size in our unoptimized
implementation (6% for 1K ∼ 99% for 10M).

II. OVERVIEW

Consider that a user Alice who uses an Android device as
a client for accessing sensitive files from trusted environments,
such as her enterprise server. As an example, Alice needs
to retrieve files from her enterprise server via her personal
Android device, and process them on the device. In this
scenario, the personal Android device, if compromised, gives
malicious applications access to Alice’s sensitive data. Though
recent research [10]–[12] and commercial solutions [13], [14]
have enabled protection for sensitive data using encryption, the
files still need to be decrypted on the untrusted Android device.
Therefore, the sensitive data is exposed in its raw form to a
large and complex software stack. The data owner (note that
the data owner in our example is Alice’s enterprise server, not
Alice) has little control over which applications and operations
can access the sensitive data.

A. Threat model & Scope

In our threat model, the scope of our approach encompasses
a broad spectrum of attacks that steal or corrupt sensitive data

by exploiting vulnerabilities in the Android software stack,
both at the user level and at the kernel level. Such attacks
include misusing permissions [15], escalating privileges [15]–
[17], exploiting vulnerable applications [18], [19], including
malicious libraries [20], exploiting Android OS vulnerabili-
ties [21] and compromising the Android kernel [22].

DroidVault aims to provide a trusted environment for
receiving and processing sensitive files, which extends security
guarantees from remote storage servers to the local Android
devices. Therefore the sensitive data mentioned in this paper
only refers to sensitive files, excluding data in other forms,
such as device attributes (e.g., GPS location and device ID).

DroidVault does not aim to protect against denial-of-service
attacks or against malicious device users. A compromised
Android OS can still deny services to DroidVault or simply
delete the local copy of encrypted data. DroidVault relies on a
trusted execution environment that cannot be compromised in
our threat model. DroidVault guarantees that only trusted code
signed by the data owner can operate on the sensitive data in
the trusted execution environment. However, it is out of scope
if the trusted code itself behaves suspiciously, such as execut-
ing an infinite loop or intentionally leaking sensitive data pub-
licly. To gain a strong guarantee, we prototype DroidVault via
the ARM TrustZone hardware protection to defeat even threats
from a compromised Android OS. However, a malicious user
may subvert DroidVault’s integrity by using hardware attacks
(such as the Direct Memory Access attack or peripherals [23]),
cold-boot attacks [24], [25] or by compromising the hardware
integrity — these attacks are beyond the scope of DroidVault.

B. Trusted Data Vault

To counter a large threat landscape, we introduce the
concept of a trusted data vault, a trusted engine that securely
enables operations on sensitive data in Android devices. In our
motivating example, sensitive data are decrypted before being
accessed in the untrusted Android software stack. In contrast,
in a trusted data vault, sensitive data are always protected with
encryption techniques when the data are outside of the trusted
data vault. The operations on the decrypted data can only be
successfully executed inside the trusted data vault. The trusted
data vault has the following security primitives:

• Confidentiality/Integrity. Sensitive data must be en-
crypted throughout its lifetime (including storage and
transmission) in the untrusted OS.

• Secure Display and Input. DroidVault guarantees a
trusted path to the end display for rendering sensi-
tive data. Similarly, it provides a trusted path from
sensitive inputs to the designated code.

• Operations on Sensitive Data. DroidVault only allows
the authorized code to operate on the decrypted data.

There are a few practical challenges in designing a trusted
data vault in mobile devices. First, the size of the TCB in the
trusted data vault should be small to be trustworthy. Second,
it should be space-efficient due to resource restrictions. To
minimize the size of the TCB, our trusted data vault (i.e.,
DroidVault) supports only limited functionality, which rules
out the option of using a virtual machine to host the trusted
data vault. We combine the use of new hardware partitioning

Android OS

0Hardware

DPM

I/O

DroidVault

Client
Application

Encrypted
file

Storage
Server

Sensitive
file

Bridge

(Red) (Green)

Fig. 1. DroidVault Design

primitives implemented in recent ARM CPUs (i.e., TrustZone),
to support a small TCB and achieve these goals.

To protect the sensitive data, any result derived from the
sensitive information inside the DroidVault cannot be leaked
to the Android OS. Although this limits the functionality
that DroidVault currently supports, the size of the TCB is
significantly reduced. We show that DroidVault is sufficient
to support several common applications which have a clear
boundary between their sensitive parts and non-sensitive parts
and thus can execute separately in two environments without
data exchange, such as file downloading and simple document
processing (described in Section V). We do not provide any
interface for the Android OS to retrieve any sensitive data
from DroidVault. Only authorized code can be loaded into
DroidVault from the Android OS and operate on the sensitive
data. To minimize the size of the TCB, we restrict the sensitive
data and their corresponding computational results inside the
trusted data vault in our work, unless the authorized code
explicitly exposes its own sensitive data to the Android OS.

III. DROIDVAULT DESIGN

We design DroidVault on the Android platform while tak-
ing advantage of the hardware-assisted isolated environment.
We focus on analyzing its minimal requirements and security
guarantees.

A. DroidVault Components

Figure 1 illustrates the design of DroidVault. To reduce
the performance overhead and the size of the TCB, we choose
to design DroidVault as a partitioning-based red/green system
rather than a virtualization layer. DroidVault is a trusted engine
which is isolated from the Android OS. It contains the follow-
ing main components: the Data Processing Module (DPM),
the Input/Output (I/O) module and the bridge module, which
are described below. DPM is the secure data processing
environment and also supports secure user interaction through
the I/O module. The bridge module provides interfaces for
communication between DroidVault and the Android OS.

DPM. DPM is the core module for sensitive data transmission
and data operations. It maintains a secure channel with the
remote storage server to securely transmit sensitive data.
Sensitive data are then encrypted before leaving the DroidVault
environment into the Android file system. When Android
applications, such as the client application in Figure 1, need to

access the encrypted sensitive files, they must load authorized
code into DPM for operations on the sensitive data. DPM
module verifies whether the loaded code is signed by the data
owner. Data owners take the responsibility to develop and sign
the code for processing the sensitive data. DPM provides a
tightly controlled runtime environment for supporting limited
operations. Section V lists a few scenarios for basic data
operations. DPM returns no sensitive information in plaintext
to the untrusted world. The result can only be displayed inside
DroidVault through the secure I/O module.

Bridge Module. To facilitate communication between Droid-
Vault and the untrusted Android OS, DroidVault introduces the
bridge module. The bridge exposes interfaces to make certain
permitted function calls from one world to the other, and
allows passing serializable primitive data between worlds via
the shared memory. For example, the bridge module provides
a single API LoadCode for the Android OS to load the
signed code into DPM. The bridge also enables DroidVault
to use resources belonging to the Android system, such as the
network and the file system. DroidVault ensures that untrusted
inputs cannot compromise the TCB and that the security-
critical data leaving DroidVault is encrypted.

I/O Module. The I/O module in DroidVault enables secure
user input and display. DPM can request the I/O module to
display sensitive data directly to users and receive user inputs.

B. Initial setup

DroidVault assumes the availability of two standard hard-
ware primitives — secure persistent storage [26] that cannot
be accessed by the untrusted Android system, and secure
boot [27]. These primitives are available on existing ARM-
based architectures in different ways [26], [28]. To establish
trustworthy connections with authenticated servers, DroidVault
stores a root certificate that identifies the root certificate
authority and therefore verifies other digital certificates using
a chain of trust. To prevent the untrusted Android system
from masquerading as the DroidVault environment, mutual
authentication is required. Data owners need to make sure that
the protected files should only be received by the intended
DroidVault environment. For this purpose, each DroidVault
has a unique public/private key pair (Kpub, Kprv). The public
key Kpub should be certified as a public key belonging to a
compliant DroidVault system by a trusted authority, such as the
device manufacturer or other trusted intermediaries (e.g., the
enterprise internal certificate server). The private key Kprv is
stored in the secure persistent storage which is only accessible
inside the secure environment. We have two preparatory steps
for deploying this key pair, as described below.

One Time Registration. To establish a secure channel with a
remote server, a user needs to notify the data owner with his
Kpub through one time registration. In enterprise environment,
employees can register their public keys with the help of
administrator. For data-hosting cloud service providers, users
can log in to their accounts and then upload their public keys
through particular web interfaces. Users need to contact either
the administrator or the service provider if they want to change
the uploaded public key in future.

Mutual Authentication. After the public key registration,
mutual authentication between a remote server and a compliant

DroidVault system can be achieved. DroidVault stores the
root certificate in its secure storage and uses it to verify
whether the remote server’s certificate is from a trustworthy
certificate authority. The remote server also authenticates the
incoming connection using the public key registered by the
user. The failure of mutual authentication indicates one of the
following scenarios: 1) the remote server’s certificate is fake;
2) the incoming connection is not from a compliant DroidVault
environment; 3) the registered public key is incorrect. As to
the scenarios 1) and 2), attackers cannot successfully download
any sensitive data. As to the scenario 3) that attackers may
change the registered public key with their own (e.g., contact
the administrator by impersonating a victim), the victim can
verify the registered public key by checking its hash through
secure display in the secure world and make an update in time.

C. DroidVault Services

In this section, we discuss the new security services sup-
ported by DroidVault components and the security guarantees
that DroidVault provides. We illustrate how the security goals
stated in Section II-B are achieved.

1) Secure Network Communication: Due to the goal of a
small TCB, DroidVault does not include the network driver in
the secure world. Thus it needs to securely upload/download
files to/from remote servers through the untrusted Android
environment.

DroidVault supports secure communication by implement-
ing the Secure Socket Layer (SSL). SSL operations have
two phases: data encryption and data transmission. DroidVault
handles the data encryption in the secure world, which prepares
the data to be transmitted based on encryption. For this
purpose, DroidVault provides different types of cryptographic
APIs in the secure world, such as the symmetric cryptographic
algorithm (e.g., AES-GCM) and the asymmetric cryptographic
algorithm (e.g., RSA). DroidVault holds the root certificate in
its secure storage to build a chain of trust for other digital
certificates and therefore authenticates remote servers.

In the data transmission phase, DroidVault requests
network-related system calls (e.g., socket, connect and
gethostbyname) from the untrusted Android OS through
the bridge module. The received data from the untrusted
Android OS are sanitized by DroidVault to protect against
exploits from inputs. Note that the sensitive data in the network
are encrypted before they leave the secure world. Therefore,
the untrusted software stack in the Android OS does not
threaten the confidentiality and integrity of the sensitive data.

2) Secure Data Storage: The secure environment only
provides limited secure storage, which is not practical to store
all the sensitive data. Therefore, we need to extend the secure
data storage with the help of the Android file system — an
untrusted but relatively large storage space. To store sensitive
data in the untrusted file system, DroidVault encrypts the data
and invokes file-system-related system calls through the bridge
module, which include open, read, write and close. The
sensitive data are in encrypted form in the untrusted Android
file system. Thus DroidVault also avoids including the file
system driver into its TCB.

3) Secure Display and Input: To provide an end-to-end
channel that directly interacts with device users, DroidVault
ensures that the sensitive display and input can never be
accessed by untrusted Android drivers. This requires a secure
overlay which securely renders any sensitive information on
the screen under the complete control of DroidVault. Unlike
the design for secure network communication and data storage
primitives, where DroidVault can delegate most of the task to
the untrusted Android OS, secure display and input must be
independently supported by DroidVault through direct control
over the display and input devices. We add drivers inside
DroidVault to control the display and input. DPM provides
the API Display to create a secure display session, and the
API Keyboard to receive inputs.

4) Secure Data Processing: DroidVault encrypts sensitive
files to achieve confidentiality. To support operation on pro-
tected data, DPM is the key component, which allows the
authorized code signed by data owners to operate on the
sensitive data. Sensitive data are securely transmitted from a
remote storage server into DPM, and then encrypted before
stored in the untrusted Android OS. We use metadata to record
the information which is used to decrypt and authenticate the
encrypted sensitive data. The metadata is also encrypted and
associated with the corresponding sensitive data in the Android
OS.

DPM only allows the authorized code to be executed.
Existing work [2], [29] has built adequate frameworks which
support popular programming languages (such as Lua and C#)
in an isolated secure environment for the ease of third-party
development. However, considering the goal of minimizing
DroidVault’s TCB, it is not necessary to include a whole
functional code environment into DroidVault’s TCB. The size
of the TCB eventually depends on the functionality to be
supported. To minimize the code environment, we only provide
several common functions including a set of APIs for data
operations, network communication, file system access and
secure display/input, listed in Table I. Note that the encryption
and decryption processes for secure network communication
and secure data storage are transparent to the DPM code.
For example, FileRead directly returns the plaintext of an
encrypted file without requiring any further decryption in the
DPM code. Any runtime environment which supports these
corresponding functions can be fit into DPM (we do not argue
which programming language is the most suitable one). The
DPM APIs are designed for the code running inside DPM.
The authorized code is loaded from the Android OS into
DPM through the bridge module API LoadCode. Next, we
will show the details about how sensitive data are securely
transmitted from a remote server to an Android OS through
DPM, and how DPM processes the sensitive data.

Secure Channel. Data transmission follows successful mutual
authentication (described in Section III-B) between the remote
server and the DroidVault execution environment. After es-
tablishing a secure channel, both sides share a secret key for
further data transmission. Shown in Figure 2, the sensitive data
are then securely transmitted from the remote server to DPM
(step 1). The Android OS is not able to decrypt the sensitive
data without the shared secret key even though the connection
goes through its network stack (shown as dash line in Figure 2).

After receiving the sensitive data, DPM encrypts it and

TABLE I. DPM APIS

Operations DPM APIs
Integer Compare(Stream s1, Stream s2)
Stream Concat(Stream s1, Stream s2)

Data Integer IndexOf(Stream s1, Stream s2, Integer fromIndex)
Operations Stream SubStream(Stream s, Integer beginIndex, Integer endIndex)

Stream Replace(Stream s, Stream regex, String replacement, Integer limit)
Integer Length(Stream s)
Descriptor HttpsConnect(Stream url)

Network Integer HttpsSend(Descriptor net, Stream s)
Communication Stream HttpsReceive(Descriptor net)

Integer HttpsClose(Descriptor net)
Descriptor FileOpen(Stream fileName, Integer mode)
Stream FileRead(Descriptor file, Integer length)

File System Integer FileSeek(Descriptor file, Integer offset, Integer whence)
Integer FileWrite(Descriptor file, Stream data)
Integer FileClose(Descriptor file)

Screen Display Integer Display(Stream data)
User Input Stream Keyboard()

then stores it in the untrusted Android OS. Key Generator
randomly1 generates a key KAE and sends the key as an input
to Authenticated Encryption Module. This module encrypts
the sensitive data with KAE and then outputs the ciphertext
and the authentication tag (step 2). The ciphertext (i.e., the
encrypted sensitive data) is directly stored into the untrusted
Android OS. To maintain the information which is used to
decrypt the ciphertext in future, we define a metadata structure
which contains the authentication tag, KAE and the data
authority (XYZ in Figure 2). Metadata Generator takes these
three pieces of information as inputs to compose the metadata
and then encrypts it with Kpub, the public key belonging
to DroidVault (step 3). Therefore, the metadata can only be
viewed as plaintext in DPM. The encrypted metadata is then
associated with the encrypted sensitive data in the Android OS.

Data Processing. DroidVault only allows execution of the
code signed by the data owner. The code can be loaded into
DPM from the Android OS, or remotely downloaded from
the server as Figure 2. The code is sent to Code Authority
Verifier to check its integrity and authority (i.e., XYZ). The
verifier makes sure that the code comes from the authority
XYZ (step 4). Before loading the encrypted sensitive data to
be operated on, DPM firstly loads the encrypted metadata into
Metadata Decryption Module. After decrypting the metadata
with Kprv , the private key belonging to DroidVault, DPM
retrieves the data’s authority (step 5). DPM checks whether
the data’s authority matches the code’s authority (step 6). Only
when there is a match, it continues to load the encrypted
data. Authenticated Decryption Module decrypts the encrypted
data with the authentication tag and KAE extracted from the
metadata (step 7). The code can then operate on the plaintext of
the sensitive file. The sensitive data are only decrypted inside
DPM which is inaccessible by the untrusted Android OS.

5) Security Analysis: Considering our motivating example,
the client on Alice’s Android device loads a piece of code
signed with the enterprise server’s authority into DPM for
downloading her document. DroidVault ensures that the docu-
ment is securely downloaded from the server, marked with the

1The random number generator can be implemented in either software or
hardware manner.

enterprise authority and then locally encrypted before stored
into the Android file system.

Now we give a security analysis from the perspective of
data integrity and authenticity guarantees. We use metadata to
maintain the keys which are used to decrypt sensitive files. The
metadata is distributed into the untrusted Android OS along
with the encrypted sensitive data and is only loaded when
necessary. This design significantly reduces the burden of a
central key management, considering the limited secure storage
in the secure environment. DroidVault only needs to store an
initial public/private key pair which is used to encrypt/decrypt
the metadata. Each encrypted file has a corresponding piece
of metadata. The mapping between the encrypted file and its
metadata can be maintained in a simple way (e.g., the metadata
uses the same file name with the encrypted file but with an
additional suffix). If attackers corrupt this mapping, they get
no benefit but the failure of file decryption.

We choose the authenticated encryption to ensure data
integrity and authenticity. Considering that it is not practical to
fit large volume files into DroidVault’s memory, the encrypted
sensitive data are read block by block for processing. The
metadata is first read into memory for the authority certificate
matching phase (step 6 in Figure 2). The encrypted file
is loaded only after the matching succeeds. Attackers may
replace the encrypted file by loading cipher blocks with other
authorities (Time-of-check to Time-of-use attacks). DroidVault
must be able to authenticate each cipher block and also identify
the correct order of these blocks. Therefore, the encryption
algorithm for protecting sensitive data requires a counter mode
block cipher which combines both confidentiality and authen-
ticity, such as CCM and GCM. In our work, we choose GCM
for the authenticated encryption. It is possible for attackers
to replace both the metadata and the encrypted sensitive data
with different ones that hold the same authority as the code.
In this scenario, we argue that both the data and the code
belong to the same authority so that no sensitive information
is leaked in plaintext unexpectedly. The code itself can identify
the corresponding data to be operated on if necessary.

Android OS DPM

Encrypted
File

Storage
Server

Sensitive
File

Bridge
Sensitive

File

Authority: XYZ
Authenticated

Encryption
Module

Key
Generator

AE keyMetadata
Generator

Ciphertext

Authority: XYZKpub

Authentication Tag

AE key

Authority: XYZ Kpub

Encrypted
Metadata

(Red) (Green)

Android OS DPM

Encrypted
File

Bridge

Sensitive
File

Authenticated
Decryption

ModuleCiphertext

AE key

Authority: XYZMetadata
Decryption

Module

Kprv

Authentication Tag

AE key

Authority: XYZ Kpub Authentication Tag

Code
Authority
Verifier

Code Authority: XYZ

Match?Server

Authority: XYZ

a) Secure Channel

b) Data Processing

If YES, Continue;

Signed
Code

①

②

③

④

⑤

⑥

⑦

Authentication Tag

Fig. 2. Secure Channel Establishment and Data Processing in DPM (The dash line means that the sensitive file is not directly exposed to the Android OS even
though the channel goes through the Android OS)

IV. IMPLEMENTATION

We implement the DroidVault prototype in the Android
Gingerbread 2.3 version on the Freescale i.MX53 Quick Start
Board (QSB). We adopt memory manager and interrupt han-
dler partially from Open Virtualization [30], which is an ARM
TrustZone open source project currently only supporting the
source code for ARM Versatile Express Board and Realview
Evaluation Board. Additionally, we implement the basic exe-
cution environment for DroidVault including DPM, basic I/O,
string library, encryption library, etc., and also port PolarSSL2,
a light-weight SSL/TLS library. The overall LOC is only
12,171, including the unoptimized PolarSSL library which
has 8857 LOC. Comparing to the Android source code, our
DroidVault’s TCB is much smaller than the whole Android OS
(26,710,217 LOC, 0.046%) or Dalvik (232,232 LOC, 5.24%).
In this section, we describe the implementation challenges
when prototyping DroidVault.

Background on ARM TrustZone . ARM TrustZone is a new
security extension in the ARM architecture, which has been
supported since ARMv6. This feature is increasingly being
utilized in emerging enterprise mobile security solutions (e.g.,
Samsung KNOX). The TrustZone technique is designed to
support red/green systems which partition hardware resources
into a secure (green) world and a normal (red) world. The
two worlds are separated by hardware mechanisms, and both
worlds support different privilege levels (unprivileged user

2PolarSSL: available at https://polarssl.org/

level and privileged kernel level). Any interrupt can be config-
ured to be delivered to either of the worlds, but not both. This
mechanism can be used to trap all the interrupts into the secure
world before they are delivered to the normal world (similar
to interrupt handling in the virtualization based system [4])
or to partition the interrupt handlers (as in partitioning based
systems [6], [8]). Context switches from the normal world
to the secure world, which we refer to as inter-world calls,
are activated through a special software interrupt generated by
the SMC instruction. The secure world can initiate a context
switch to the normal world by writing a special value to the
SCR register. Context switches are handled by software code
handlers (rather than hardware as in x86 CPUs). DroidVault
handles these context switches with software handlers. The
secure world can read and write arbitrary memory of the
normal world, while the normal world can only operate on
its assigned memory regions. This allows the secure world
to build one-way memory isolation, which can be used as a
mechanism to share data in the inter-world call. There are
other mechanisms supported for secure boot — we do not
discuss them here as these are not the focus of DroidVault’s
core design. Next, we describe the key techniques during
prototyping DroidVault on the ARM TrustZone architecture.

World Switch. In the ARM TrustZone architecture, the SMC
instruction is dedicated to generate a software interrupt that
activates a world switch between the secure world and the
normal world. SMC is only executable inside the kernel space
with the privileged mode. It triggers the CPU to enter a special
CPU mode, Monitor Mode, newly introduced by the ARM

TrustZone architecture for interfacing two worlds. In monitor
mode, we implement the SMC handler (256 LOC), which stores
all the registers of the current world and then restores the state
of the other world.

The ARM microprocessor has 16 general-purpose registers
(R0-R15). R0-R7 are used as either temporary registers or
argument registers while the rest are preserved for other special
purposes. In the ARM TrustZone architecture, all the registers
are accessible in the secure world. Some privileged registers
are forbidden or blanked in the normal world.

To activate an inter-world call in the kernel space, the
bridge module is implemented as a loadable kernel module
which adds a handler to the ioctl system call in the Android
system. When an Android application requests services of
the secure world, we use registers R0-R3 to share arguments
between the two worlds. R0 and R1 are used to identify the
requested service and store the return value from DroidVault
to the Android OS, while R2 and R3 are used to store the
information about the shared memory between the two worlds,
including physical addresses of the input and the output buffer
registered by the bridge and the length of each buffer.

When the secure world requests resources belonging to
the Android system, we pass all the arguments to the buffer
shared with the Android OS, and use registers R0 and R1
to identify the call back request and the system call type.
After switching to the normal world, the bridge module takes
over and handles the request from DroidVault by parsing the
arguments and invoking the corresponding system call. After
finishing the system call in the Android system, the bridge
module writes the result back to the shared buffer and then
uses the SMC instruction to switch back to DroidVault. After
the world switch, DroidVault restores its previous state and
continues the execution.

Porting DroidVault in secure world. We implement the
basic execution environment for the secure world on Freescale
i.MX53 QSB, including the initialization code, the UART3

driver and the interrupt handler. We support file-system-related
and network-related system calls in the secure world. To reuse
the Android file system and network stack for minimizing
TCB, these system calls in the secure world are only wrapper
interfaces which are further handled in the Android OS using
our inter-world calling mechanism. We also port PolarSSL in
the secure world. Therefore, the secure world can establish
SSL channels with remote servers via the Android network
stack. For the secure display and user input, we use a serial
console to simulate the secure display and a hardware keyboard
as the secure input device. Open Virtualization has supported
the display and user input in the secure world on Samsung(R)
Exynos 4412, so these two features are not fatal obstacles
when porting DroidVault into the ARM TrustZone architecture.
Supporting secure display on Freescale i.MX53 QSB is part
of our future work.

V. EVALUATION

In this section, we discuss the functionality and applicabil-
ity of our DroidVault prototype. We integrate it with real-world

3Universal Asynchronous Receiver/Transmitter translates data between par-
allel and serial forms.

applications and services. We also evaluate the performance of
DroidVault.

A. New Applications Enabled by DroidVault

We successfully adapt Dropbox application as a cloud
service provider to work with DroidVault. To evaluate the
capability of the DPM module, we also develop a few applets
for parsing simple documents.

Dropbox File Manager. We build a Dropbox file manager
based on the Dropbox SDK to enable secure management
of files on Dropbox using an untrusted Android device. This
application allows users to securely log in to their Dropbox
accounts, browse the Dropbox file system (assuming the file/di-
rectory names are not sensitive), upload/download files and
search strings in the files. After receiving the user name and
password from the secure input, it constructs an HTTP post
message to send the password to the server and receive the
response via DPM APIs HttpsSend and HttpsReceive.
When a file reaches DroidVault, the file manager encrypts
it in the secure world and stores it in the file system. The
file manager also allows users to search a string of text in
the encrypted file. The secure world generates the grep-
style output by invoking IndexOf API with the particular
strings, and displays the result to users on the secure display
by invoking Display API.

Using DroidVault services, this file manager enables secure
file management and string search operation in an untrusted
Android device without leaking sensitive data to the device.

Zip Archiver. Zip is a common archive file format. In the zip
format, each file record is a file entry, which includes the file
header and contents; at the end of the zip file, central directory
contains all the offsets of these entries.

A zip parser typically follows the following steps.

1) Read a file header and check whether it is valid or
not by signature matching. If so, obtain attributes of
the file in the header.

2) Use the file size, the file name size and the extra data
size to get file contents. Move to the next file header.

We investigate the source code of an open source Zip
Viewer4 (written in Java) to evaluate the feasibility of pro-
cessing zip files through DroidVault. We encrypt a set of
zip file samples5 and modify Zip Viewer to decrypt them
inside DroidVault. We develop the code running inside DPM
to decrypt the files and extract the file entry names in the zip
files through data operations and file-system-related operations
listed in Table I. It uses FileRead to read the plaintext of the
encrypted file header and then parses the header via Compare,
IndexOf and SubStream. We consider the file entry names
as non-sensitive and thus explicitly return them back to the
Android OS. We only need to rewrite 2613 LOC mainly inside
ZipInputStream.java to request data processing in DroidVault
and handle the return results. When the Zip Viewer starts to
parse one encrypted zip file for extracting the file entry names,

4Zip Viewer: available at http://code.google.com/p/zipviewer/
5These files are collected from real-world project files in Google Code:

1) guestbook 10312008 2) schema-upgrades003 019 3) google-secure-data-
connector-1.2-0-bin 4) connector-otex-2.6.12-src

TABLE II. THE PERFORMANCE OF ZIP VIEWER WHEN RUNNING WITH
DROIDVAULT (MEASURED IN MILLISECOND)

Projects 1 2 3 4
of Files 12 29 72 162

Size of TAR 20K 60K 4.8M 1.0M
Size of ZIP 4.5K 16K 4.3M 264K

TAR

Without 79 95 118 373DroidVault
With 118 190.3 319.3 1037DroidVault

Overhead 49.37% 100.32% 170.59% 178.02%

ZIP

Without 60 65 87 235DroidVault
With 99.4 160 306.8 718DroidVault

Overhead 65.67% 146.15% 253.64% 205.53%

TABLE III. THE PERFORMANCE OF FILE DOWNLOADING INSIDE
DROIDVAULT (MEASURED IN MICROSECOND)

Size of File 1K 10K 100K 1M 10M
Without DroidVault 4084 5342 17815 148971 1335257

With DroidVault 4366 7008 33518 280805 2663760
Overhead 6.90% 31.19% 88.14% 88.50% 99.49%

we intercept and load our code into DPM to decrypt and parse
the zip file. DroidVault returns a list of file entry names back
to the Android OS and then Zip Viewer continues to use these
results for display.

We also extend Zip Viewer to handle the tar format.
Similarly in tar format, each file is organized as one or multiple
content blocks, preceded by a header block which describes its
metadata, such as the file name and the size. Each of the block
has 512 bytes. Two sequential blocks filled with 0 indicate the
end of a file. We only need to slightly adjust 77 LOC.

B. Performance

We build an application that downloads files of various
sizes from a remote server with DroidVault. For each file, we
download 1000 times and calculate the average download time.
Table III shows the download time for files of different sizes.

Comparing with the normal case of file downloading, our
solution has three extra steps: 1) after retrieving encrypted data
from the SSL channel, the Android OS needs to copy the data
into the shared memory with the secure world (Shared Memory
Copy); 2) the Android OS triggers a context switch; (Context
Switch); 3) after the secure world decrypts the data in the
shared memory, it encrypts it locally (Data Encryption). Note
that we do not consider the decryption part as an extra step
since the normal case also needs to decrypt the data retrieved
from the SSL channel. To compare the weight of these three
factors, we create our own micro-benchmark to measure the
overhead of each step. We measure the time for shared memory
copy inside the normal world and the time for data encryption
inside the secure world. To evaluate the time for context switch
between the two worlds, we modify DroidVault to return to the
normal world without any operation inside the secure world.
By running 1000 times, we get the average time for context
switch around 8.4 microseconds including SMC interrupt and
context save/restore. Table IV shows our results. The main
overhead comes from the context switch and data encryption.
The time for context switch depends on hardware platform,
which is hard to reduce. However, we can optimize it by

TABLE IV. THE PERFORMANCE OF OUR MICRO-BENCHMARK TEST
(MEASURED IN MICROSECOND)

Size of File 1K 10K 100K 1M 10M
Shared Memory Copy 5 18 202 1523 11818

Context Switch 76 680 6707 67160 683347
Data Encryption 201 968 8794 63151 633338

increasing the shared memory buffer and thus reducing the
number of context switches. The overhead on data encryption
depends on the encryption method and the implementation.
In the prototype, we have not optimized the code. The per-
formance can be improved by several optimizations, such as
adjusting the block size. It can also be significantly improved
by hardware implementations [31]. As an optimization to this
specific case of file downloading, we can even avoid the extra
data encryption step by directly utilizing the encrypted data
retrieved from the SSL channel and using the SSL session key
to generate the corresponding metadata. We plan to optimize
our implementation in the near future.

We also evaluate Zip Viewer to report the performance
overhead introduced by DroidVault, which is incurred by
encryption/decryption, context switch and data copy between
the two worlds. During our experiment, we execute Zip Viewer
to read archive files of various sizes in our sample set. Our
result is shown in Table II. As the number of compressed
files in one archive varies from 12 to 162, the performance
overhead increases from tens of milliseconds to hundreds of
milliseconds. This is due to that the number of context switches
is proportional to the number of file headers (any file-system-
related system call in the secure world incurs the context
switch from DroidVault to the Android OS). Most of the over-
head (50%∼2x) is caused by the context switches during the
interaction between the application and DroidVault. Because
the overall time is small (less than 1sec), we do not perceive
significant delay while interacting with the application.

VI. RELATED WORK

Extending Android to protect sensitive data. Several solu-
tions extend the Android platform to protect the sensitive data.
TaintDroid [32] monitors the flow of sensitive information in
Android devices to detect the data leakage. AppFence [33],
MockDroid [34], Apex [35], Saint [36], Constroid [37], Tree-
Droid [38], Kynoid [39], TISSA [40], Aurasium [41] and
[42] enable the runtime enforcement to support semantic-
rich control on sensitive data; for example, an application
can specify that any other application granted the network
access permission cannot read its sensitive data. Another line
of research protects the sensitive data in Android by isolating
the code segment according to their sources or security levels.
AdDroid [43] and AdSplit [44] separate the code from different
origins. They extract libraries out of the host application
and use a separate process as a container to isolate them.
TrustDroid [45] groups applications into different domains, and
the communication among domains is restricted to prevent the
data leakage. Some existing work also protects the sensitive
data by encryption. For example, CleanOS [46] is a prototype
to mitigate the threat of device lost by encrypting sensitive
data and evicting the encryption key to the trusted cloud in
time. All above solutions in this category rely on the trust of
the Android OS. In contrast, DroidVault enables the sensitive

data protection in an untrusted Android system.

Virtualization on Android devices. L4Android [47] is a
security framework which supports running multiple Android
OSes in parallel through virtualization on top of a microkernel.
Each top Android OS runs in a standalone virtual machine.
Cells [48] proposes virtual phone environment by configur-
ing virtual device drivers. It is a more lightweight isolated
environment comparing with L4Android, and can be treated
as a container of available virtual device drivers and Android
applications. These virtualization-based solutions achieve the
sensitive data protection, but the TCB is quite large, including
the whole Android software stack. Even though the resources
are isolated, they are still exposed to the malicious applications
or the compromised OS.

Data-oriented protection. A few abstractions are designed
for data-oriented protection. Lie et al. [49] prevent memory
tampering through an abstract of execution-only memory.
DataSafe [50] uses memory encryption to protect data, achiev-
ing the concept of data capsules [51]. These solutions allow
operations on sensitive data under the control of a policy. How-
ever, they cannot prevent information leakage through implicit
flows and side channels. In contrast, DroidVault provides a
stronger guarantee to secure sensitive data with a hardware-
assisted isolated environment. Policy-sealed data [52] provides
a new trusted computing abstraction to protect customer data
hosted by cloud services, based on that the sealed customer
data can only be unsealed by nodes that match the customer-
defined policy. Similar with our solution, these approaches also
use encryption to protect sensitive data and only allow de-
cryption on demand, thus reducing the potential data leakage.
However, DroidVault supports richer functionality to operate
on the encrypted data.

Trusted execution environment. On-board credentials plat-
form [2] designs an architecture for the credential management
via a hardware-assisted secure environment and provisions
credential secrets that are only accessible to specific pre-
authorized programs inside the secure environment. However,
our DroidVault design aims to establish a secure channel with
remote data-hosting servers and support secure interaction
with end users, which they do not address. NGSCB [6]
developed by Microsoft provides an execution environment
with high isolation assurance on both software and hardware
base. DroidVault can be adapted into the NGSCB architecture.
Existing research has provided trusted execution environment
based on the virtualization (Terra [53], Proxos [54], etc.) and
trusted hardware (Flicker [55], vTPM [56], etc.). The idea is
to establish trust in the system based on a small root of trust.
Mobile Trusted Module is a platform-independent approach
for trusted computing, similar to TPM [57]. It allows a wide
range of implementations, such as based on SELinux [3] or
hardware support (ARM TrustZone and Secure Element [4],
[5]). However, all above solutions mainly focus on the integrity
of applications. They do not preserve the application usability
by allowing operations on the sensitive data. Our solution
is additionally designed to support useful data operations on
protected sensitive data. [58] proposes a solution of trusted
path on x86 computers which establishes a protected channel
between a user’s I/O device and a program. Their solution is a
hypervisor-based design which is claimed to be portable onto
the ARM platform in the future. However, instead of building

trust between a user’s I/O device and a program, DroidVault
aims to extend the trust with remote servers.

VII. CONCLUSION

We present DroidVault, a trusted engine on the Android
platform, to ensure the confidentiality of the sensitive data. It
establishes the trust between data-hosting servers and Android
devices, and provides a trusted execution environment for
processing the sensitive data. We prototype DroidVault on
the ARM TrustZone architecture to rigorously isolate the
sensitive data from the untrusted Android OS. DroidVault has
a significantly reduced TCB compared to the present Android
OS. Through our evaluation, we demonstrate that DroidVault
can be adopted by legacy cloud storage services and support
popular operations on sensitive data.

ACKNOWLEDGMENTS

We thank anonymous reviewers for their valuable feedback.
This research is partially supported by the research grant R-
252-000-519-112 from Ministry of Education, Singapore.

REFERENCES

[1] Y. Zhou and X. Jiang, “Dissecting Android Malware: Characterization
and Evolution,” in IEEE SP, 2012.

[2] K. Kostiainen, J.-E. Ekberg, N. Asokan, and A. Rantala, “On-board
Credentials with Open Provisioning,” in ASIACCS, 2009.

[3] X. Zhang, O. Acıiçmez, and J.-P. Seifert, “A Trusted Mobile Phone
Reference Architecture via Secure Kernel,” in STC, 2007.

[4] J. Winter, “Trusted Computing Building Blocks for Embedded Linux-
based ARM Trustzone Platforms,” in STC, 2008.

[5] K. Dietrich and J. Winter, “Towards Customizable, Application Specific
Mobile Trusted Modules,” in STC, 2010.

[6] M. Peinado, Y. Chen, P. Engl, and J. Manferdelli, “NGSCB: A Trusted
Open System,” in ACISP, 2004.

[7] B. Lampson, “Privacy and Security Usable Security: How to Get It,”
Commun. ACM, vol. 52, no. 11, Nov. 2009.

[8] A. Vasudevan, B. Parno, N. Qu, V. D. Gligor, and A. Perrig, “Lockdown:
Towards a Safe and Practical Architecture for Security Applications on
Commodity Platforms,” in TRUST, 2012.

[9] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “SeL4: Formal Verification of an OS Kernel,”
in SOSP, 2009.

[10] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
“CryptDB: Protecting Confidentiality with Encrypted Query Process-
ing,” in SOSP, 2011.

[11] C. Weinhold and H. Härtig, “VPFS: Building a Virtual Private File
System With a Small Trusted Computing Base,” in EUROSYS, 2008.

[12] R. A. Popa, J. R. Lorch, D. Molnar, H. J. Wang, and L. Zhuang,
“Enabling Security in Cloud Storage SLAs with CloudProof,” in ATC,
2011.

[13] “BoxCryptor,” https://www.boxcryptor.com/.
[14] “Viivo: Cloud File Encryption,” http://viivo.com/.
[15] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin, “Per-

mission Re-delegation: Attacks and Defenses,” in USENIX SECURITY,
2011.

[16] W. Enck, M. Ongtang, and P. Mcdaniel, “Mitigating Android Software
Misuse Before It Happens,” Tech. Rep., 2008.

[17] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy, “Privilege
Escalation Attacks on Android,” in ISC, 2011.

[18] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The Most Dangerous Code in the World: Validating
SSL Certificates in Non-Browser Software,” in CCS, 2012.

[19] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “CHEX: Statically Vetting
Android Apps for Component Hijacking Vulnerabilities,” in CCS, 2012.

[20] M. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe Exposure
Analysis of Mobile In-App Advertisements,” in WISEC, 2012.

[21] M. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic Detection of
Capability Leaks in Stock Android Smartphones,” in NDSS, 2012.

[22] J. Bickford, R. O’Hare, A. Baliga, V. Ganapathy, and L. Iftode,
“Rootkits on Smart Phones: Attacks, Implications and Opportunities,”
in HOTMOBILE, 2010.

[23] B. Carrier and J. Grand, “A Hardware-based Memory Acquisition
Procedure for Digital Investigations,” Digit. Investig., vol. 1, no. 1, 2004.

[24] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Cal, A. J. Feldman, and E. W. Felten, “Lest We Remember: Cold
Boot Attacks on Encryption Keys,” in USENIX SECURITY, 2008.

[25] “Danger on ice: Android info thaws in cold boot attack,” http://phys.
org/news/2013-02-danger-ice-android-info-cold.html.

[26] A. Vasudevan, E. Owusu, Z. Zhou, J. Newsome, and J. M. McCune,
“Trustworthy Execution on Mobile Devices: What Security Properties
Can My Mobile Platform Give Me?” in TRUST, 2012.

[27] “ARM Security Technology: Building a Secure System using TrustZone
Technology,” http://infocenter.arm.com/help/index.jsp?topic=/com.arm.
doc.prd29-genc-009492c/DABGFFIC.html.

[28] “CryptoCell®for TrustZone,” http://www.discretix.com/cryptocell-for-
trustzone/.

[29] N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Trusted Language
Runtime (TLR): Enabling Trusted Applications on Smartphones,” in
HOTMOBILE, 2011.

[30] “Open Virtualization,” http://www.openvirtualization.org/.
[31] T. Babu, K.V.V.S.Murthy, and G.Sunil, “Aes algorithm implementation

using arm processor,” ICWET, 2011.
[32] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and

A. N. Sheth, “TaintDroid: an Information-Flow Tracking System for
Realtime Privacy Monitoring on Smartphones,” in OSDI, 2010.

[33] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These
aren’t the Droids You’re Looking for: Retrofitting Android to Protect
Data from Imperious Applications,” in CCS, 2011.

[34] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan, “MockDroid:
Trading Privacy for Application Functionality on Smartphones,” in
HOTMOBILE, 2011.

[35] M. Nauman, S. Khan, and X. Zhang, “Apex: Extending Android Permis-
sion Model and Enforcement with User-defined Runtime Constraints,”
in ASIACCS, 2010.

[36] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel, “Semantically
Rich Application-Centric Security in Android,” in ACSAC, 2009.

[37] D. Schreckling, J. Posegga, and D. Hausknecht, “Constroid: Data-
centric Access Control for Android,” in SAC, 2012.

[38] M. Dam, G. L. Guernic, and A. Lundblad, “TreeDroid: A Tree Automa-
ton Based Approach to Enforcing Data Processing Policies,” in CCS,
2012.

[39] D. Schreckling, J. Posegga, J. Köstler, and M. Schaff, “Kynoid: Real-

time Enforcement of Fine-grained, User-defined, and Data-centric Se-
curity Policies for Android,” in WISTP, 2012.

[40] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh, “Taming Information-
stealing Smartphone Applications (on Android),” in TRUST, 2011.

[41] R. Xu, H. Saı̈di, and R. Anderson, “Aurasium: Practical Policy Enforce-
ment for Android Applications,” in USENIX SECURITY, 2012.

[42] D. Kantola, E. Chin, W. He, and D. Wagner, “Reducing Attack Surfaces
for Intra-Application Communication in Android,” in SPSM, 2012.

[43] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner, “AdDroid: Privilege
Separation for Applications and Advertisers in Android,” in ASIACCS,
2012.

[44] S. Shekhar, M. Dietz, and D. S. Wallach, “AdSplit: Separating Smart-
phone Advertising from Applications,” CoRR, abs/1202.4030, 2012.

[45] S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A.-R. Sadeghi, and
B. Shastry, “Practical and Lightweight Domain Isolation on Android,”
in SPSM, 2011.

[46] Y. Tang, P. Ames, S. Bhamidipati, A. Bijlani, R. Geambasu, and
N. Sarda, “CleanOS: Limiting Mobile Data Exposure with Idle Evic-
tion,” in OSDI, 2012.

[47] M. Lange, S. Liebergeld, A. Lackorzynski, A. Warg, and M. Peter,
“L4Android: a Generic Operating System Framework for Secure Smart-
phones,” in SPSM, 2011.

[48] J. Andrus, C. Dall, A. V. Hof, O. Laadan, and J. Nieh, “Cells: a Virtual
Mobile Smartphone Architecture,” in SOSP, 2011.

[49] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and
M. Horowitz, “Architectural Support for Copy and Tamper Resistant
Software,” SIGPLAN Not., 2000.

[50] Y.-Y. Chen, P. A. Jamkhedkar, and R. B. Lee, “A Software-Hardware
Architecture for Self-Protecting Data,” in CCS, 2012.

[51] P. Maniatis, D. Akhawe, K. Fall, E. Shi, S. McCamant, and D. Song,
“Do You Know Where Your Data Are?: Secure Data Capsules for
Deployable Data Protection,” in HOTOS, 2011.

[52] N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu, “Policy-Sealed
Data: A New Abstraction for Building Trusted Cloud Services,” in
USENIX SECURITY, 2012.

[53] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra:
A Virtual Machine-Based Platform for Trusted Computing,” in SOSP,
2003.

[54] R. Ta-Min, L. Litty, and D. Lie, “Splitting interfaces: Making Trust
between Applications and Operating Systems Configurable,” in OSDI,
2006.

[55] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki,
“Flicker: An Execution Infrastructure for TCB Minimization,” in EU-
ROSYS, 2008.

[56] S. Berger, R. Cáceres, K. A. Goldman, R. Perez, R. Sailer, and L. van
Doorn, “vTPM: Virtualizing the Trusted Platform Module,” in USENIX
SECURITY, 2006.

[57] “Trusted Platform Module (TPM) Specifications,” https://www.
trustedcomputinggroup.org/home.

[58] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune, “Building
Verifiable Trusted Path on Commodity x86 Computers,” in IEEE SP,
2012.

