
You Can’t Be Me: Enabling Trusted Paths & User
Sub-Origins in Web Browsers

Enrico Budianto1, Yaoqi Jia1, Xinshu Dong2, Prateek Saxena1, Zhenkai Liang1,

National University of Singapore1, Advanced Digital Sciences Center2

{enricob,jiayaoqi,prateeks,liangzk}@comp.nus.edu.sg,
xinshu.dong@adsc.com.sg

Abstract. Once a web application authenticates a user, it loosely associates all
resources owned by the user to the web session established. Consequently, any
scripts injected into the victim web session attain unfettered access to user-owned
resources, including scripts that commit malicious activities inside a web applica-
tion. In this paper, we establish the first explicit notion of user sub-origins to de-
feat such attempts. Based on this notion, we propose a new solution called USER-
PATH to establish an end-to-end trusted path between web application users and
web servers. To evaluate our solution, we implement a prototype in Chromium,
and retrofit it to 20 popular web applications. USERPATH reduces the size of
client-side TCB that has access to user-owned resources by 8x to 264x, with
small developer effort.

Keywords: User sub-origins, trusted path, script injection attacks

1 Introduction
Many of the web applications today, such as DropBox, Gmail and Facebook, provide
user-oriented services, where users need to create their own accounts to use the service
tailored to them. User-oriented web applications isolate data belonging to individual
users and bind access control privileges to specific user accounts (e.g., owners or ad-
ministrators). In such web applications, the authority of a user is typically represented
by a web session, and the security mechanisms are centered on protecting the web ses-
sion state from being accessed by attackers. In such a setting, if an attacker is able to
inject scripts into the session, the scripts run with user’s full authority. In this paper, we
do not focus on mechanisms to prevent web application vulnerabilities from occurring.
Rather, we propose mechanisms to defend against post-attack malicious behavior of an
injected script, which we term as post-injection script execution (PISE) attacks. Our
proposal serves as a second line of defense when existing mechanisms of script injec-
tion prevention, such as Content Security Policy [1], fail to achieve full coverage [2].

PISE attacks are the aftermath of script-injection attacks that occur in a variety
of ways, such as mixed content (over HTTP) in HTTPS sessions [3], loading mali-
cious third-party scripts [4], or via XSS attacks [5]. The threat model in PISE attacks
is strong and challenging to counteract: injected scripts already run under the same ori-
gin as the web application. In this work, we focus on PISE attacks that target sensitive
data owned by users and mimic normal user interactions within a web application. For

2 E. Budianto, Y. Jia, X. Dong, P. Saxena, and Z. Liang

example, XSS worms on Facebook profiles that utilize self-XSS attacks to befriend cer-
tain users [6] or malicious extensions that stealthily steal authentication credentials and
hijack user accounts [7] are some of the real-world examples.

We observe two fundamental limitations of the present web platform. First, to defeat
PISE attacks, browsers need to have the notion of a user authority that controls access
to sensitive user-owned resources. The same-origin policy does not support such access
control. Second, there is no direct way for server-side web applications to be faithfully
informed about user’s interaction at the client-side. As a result, web servers cannot,
for example, distinguish between web requests generated in response to legitimate user
interaction versus requests generated by injected scripts, even in the presence of web
sessions protection mechanisms like HTTPS. A recent line of research has proposed
piecemeal defenses to mitigate some classes of PISE attacks via client-side channels [8,
9], server-side channels [10, 11], self-exfiltration [12], or using attacks that mimic user
interactions to legitimize dangerous information flows [13]. However, none of them
offer a comprehensive solution to prevent PISE attacks completely.
Our Solution. We propose a solution called USERPATH, which augments the present
web platform with a security primitive that explicitly represents a User authority and
establishes an end-to-end trusted Path between the user and the server. We introduce
the first explicit notion of user sub-origins1 into web applications, which are primitives
that run with the authority of web application users. Our mechanism enables user sub-
origins to isolate user’s data and privilege-separate the code operating on it from the rest
of the web origin. Thus, our mechanism tightens the authority of the web application
users from web sessions to user-suborigins. To support our end-to-end system, we build
a trusted path between human users and the web application server [15]. A trusted path
in our work is defined as a privileged channel, which allows the server to tightly and
reliably control the communication of visible content and input with the user (via the
standard DOM APIs), even in the presence of malicious application code. Although
this concept has recently been explored to develop new access control mechanisms
on mobile and traditional operating systems [15, 16], building it for the web has only
recently been investigated [9].

Our solution is easy to deploy in practice – with a small number of changes in
existing browsers and web applications, USERPATH can be set up to protect users
from PISE attacks. We reuse the existing web isolation primitives and minimize new
abstractions added. Our solution is a 475 lines of code patched on Chromium 12.
USERPATH-enabled browsers are backward-compatible with non-USERPATH-enabled
websites. From the user’s perspective, using a USERPATH-enabled website would be
largely identical to the original site, except for verifying a colored login input box when
authenticating with a password (see Section 4). As a result, USERPATH has a much
lower adoption cost as compared to another recent trusted-path proposal that requires
generation and uploading of SSL keys for every website [9]. Furthermore, our solution
can also be easily deployed with modest development effort. Specifically, developers

1 Recently, browsers have added support for per-page sub-origins [14] that compartmentalize
contents on a web page within several sub-authorities under the same origin. The per-page
sub-origin proposal offers no guarantee to defend against PISE attacks, and we complement
per-page sub-origins with the additional notion of user authority and trusted path.

Enabling Trusted Paths & User Sub-Origins in Web Browsers 3

can easily retrofit web applications to use USERPATH simply by privilege-separating
sensitive data and JavaScript logic on a client-side user-suborigins called UFrame.
UFrame is an iframe-like component that isolates code under a different JavaScript
context and has the ability to render tamper-proof HTML elements. Such privilege sep-
aration of JavaScript code is straightforward for developers to use, as argued in recent
works [17, 18].

From a security standpoint, users no longer trust a website at the time of login if
script injection vulnerabilities are present in the website. Then, how does a user login
and setup an authenticated trusted path? We address this critical issue by introducing
secure UI elements [16] that protect user’s login credential from malicious client-side
code and using a PAKE protocol [19]. A PAKE protocol is a zero knowledge protocol
that lets two parties authenticate each other without revealing secret information (e.g., a
password) through the communication channel. Having authenticated the user, USER-
PATH maintains isolation of sensitive resources throughout the session by resorting to
user sub-origins and a trusted path.
Summary of Results. We deploy USERPATH on 20 popular open-source web applica-
tions. The evaluation demonstrates that our solution can protect user-owned data from
PISE attacks in these applications with modest adoption effort (in the order of days).
For each application, we label a number of data fields as sensitive, and modify the ap-
plication logic to use USERPATH abstractions. We find that USERPATH eliminates the
threats to user data from 325 historical security vulnerabilities in these applications,
and reduces the trusted computing base (TCB) size by 8x to 264x. Finally, the perfor-
mance overhead incurred by our solution is negligible for real-world applications. All
case studies and the Chromium-based implementation are available online [20], and we
release a video demonstrating the smooth user experience with a USERPATH-enabled
browser [21].
Contributions. In summary, we make the following contributions in the paper:

– End-to-end Solution. Our main contribution lies in analyzing the attack model we
term as PISE attacks, examining the various dimensions of attacks, and providing
an end-to-end solution to defeat them. We adapt and combine some known tech-
niques with our new ones to achieve a solution that is easy to deploy on the existing
web platform. To the best of our knowledge, this is the first comprehensive defense
against PISE attacks targeting user-owned resources, which is a significant subset
of self-exfiltration attacks [12].

– User Sub-Origins & Trusted Path. We propose the first explicit notion of user sub-
origins on the web. We further develop an end-to-end trusted path to eliminate PISE
attacks targeting user-owned data.

2 Problem Definition

The missing notion of user sub-origins in today’s web sessions gives rise to various
attacks threatening web applications. We summarize such attacks and elaborate how
they can occur in an existing web application.

4 E. Budianto, Y. Jia, X. Dong, P. Saxena, and Z. Liang

2.1 PISE Attacks Targeting User-owned Data

Unlike in traditional OSes (e.g., UNIX), there is no built-in notion of a user authority on
the present web, where users login into sites and authenticate themselves using custom
password-based interfaces. Authentication of subsequent HTTP requests is performed
via “bearer tokens”, such as session IDs, CSRF tokens, or cookies. In the presence of
script injection vulnerabilities, these tokens are prone to attacks, either via direct token
stealing [22], phishing attempts [23], or session riding (e.g., fake HTTP request [24]).
In this paper, we term such illegitimate accesses from malicious scripts to resources
owned by benign victim users as post-injection script execution (PISE) attacks.

Malicious
Scripts

Attacker injects
scripts through
reflected XSS attack
or malicious third-
party scripts

Same-site request crafted
to add Mallory as Admin

Elgg ServerVictim
Role : Administrator

 REQUEST:
forms/useradd.php

 INPUT :
Victim interacts with
input elements

Mallory
Role : Normal user

 DISPLAY:
Browser renders web
content, including
user-owned data

BROWSER
SERVICES

UI2

NetworkDOM
API

Benign
Scripts

 SESSION DATA:
Benign scripts : accessing contact data
Malicious scripts : stealing cookies,
intercepting user input, etc.

3

1

4

Fig. 1: Example Interactions in Elgg. Solid lines illustrate benign interactions between
the user, UI elements and session data. Dashed lines illustrate the examples of PISE
attacks, where an attacker injects malicious scripts into the victim’s session, steals the
victim’s CSRF token, and performs a same-site request forgery attack to the Elgg server.

We illustrate various PISE attacks with a real-world social networking application
called Elgg2. Elgg maintains user profiles, manages private message dispatch and blog-
ging, and integrates itself with other social networking sites. Consider the following
features available to administrators:

– Add New User: This is a privileged feature that can only be accessed by administra-
tors. The administrator specifies information belonging to a particular user that is
going to be added to the system. The administrator can also mark the user as a new
administrator by identifying it on a checkbox element. Thereafter, this particular
information is sent to the server using HTML Form submit mechanism.

– Profile Management: Elgg provides profile data management to maintain particular
information for each user, similar to most social networking applications. In addi-
tion, there is a feature to set other users as administrators directly from their profile
pages. However, this feature is privileged to an administrator. The administrator
can add another user as an administrator by clicking on “Make admin” link on the
user’s profile page.

2 http://elgg.org/

Enabling Trusted Paths & User Sub-Origins in Web Browsers 5

In PISE attacks, injected scripts can access user-owned resources (e.g., the state of
“is admin” checkbox of a user) located at the client side and the server side, as shown
in Figure 1. We systematically analyze the various channels available to PISE attacks.

At the client side, we categorize three variants of PISE attacks depending on differ-
ent channels that are exposed to an attacker.

– Display Channel Attacks. An attacker can tamper with display elements of a web
application to steal sensitive information from users. Two examples of attacks that
exploit this channel are UI defacing and phishing for user credentials. In UI de-
facing attacks, an attacker alters the web content to mislead users. For instance, a
malicious extension can change the appearance of a profile page in Facebook [6].
Besides, malicious scripts can also introduce fake UI elements (such as fake login
input) to steal users’ credentials, therefore allowing them to impersonate as Alice
on a site O. Unlike traditional phishing attacks where a malicious website mimics
another benign website, in this example the malicious scripts are running within
the victim origin O. Therefore, common security indicators such as SSL lock icons
and URL bars do not help Alice in detecting the phishing attempt.

– Input Channel Attacks. In order to tamper with sensitive data, an attacker can ex-
ploit this channel by (1) intercepting or stealing user input; or (2) launching an at-
tack that programmatically interacts with the interface element of the web [13,16].
In the second scenario, malicious scripts can impersonate a user by forging a user
interaction with the DOM element on the web page (e.g., auto-clicking the “add
user” button) and mimic the user’s action. Another popular attack that exploits this
channel (and the display channel) is clickjacking [25], which typically runs in a dif-
ferent website than on Elgg. It can, for instance, load Elgg in a transparent overlay.
Then underneath Elgg, it can render another malicious web page to attract users to
click on the “Make admin” button in the invisible Elgg layer above. Clickjacking
attacks sabotage a user’s intention to interact with a UI element as intended by an
attacker.

– Session Data Channel Attacks. Malicious scripts injected into the web page have
access to arbitrary data. It can exfiltrate sensitive data, including cookies, CSRF
tokens, capability-bearing URLs, and passwords, through two channels: directly
to an attacker-controlled website [8] or via the victim’s website itself, which is
recently discussed and termed as self-exfiltration attacks by Chen et.al. [12]. Due
to lack of input sanitization on Elgg’s “edit page” functionality [26], cookie data
can be stolen and exfiltrated using XSS attacks via a public blog entry, which is
visible to the attacker. This is a confirmed security bug and has been documented
as a CVE entry [27].

In addition to these three attack variants, the injected scripts have access to the
network, allowing the attacker to access server-side resources of the user.

– Network Request Channel Attacks. Malicious scripts can craft and send HTTP
requests to the server by invoking XMLHttpRequest API, or using HTML’s re-
source tag attributes, such as a src attribute in an tag. Such crafted re-
quests can be used to perform specific operations on the server-side application.
Some websites implement CSRF tokens that are sent along with HTTP requests
and server-side applications verify whether the incoming requests carry expected

6 E. Budianto, Y. Jia, X. Dong, P. Saxena, and Z. Liang

CSRF tokens. However, secret CSRF tokens and other existing defenses for CSRF
attacks, such as Referer and Origin headers [28], do not suffice for preventing
requests forged by PISE attacks, as the injected scripts run in the same origin.

2.2 Insufficiency of Existing Solutions

Many existing solutions provide piecemeal defenses against PISE attacks. In Table 1,
we briefly compare existing second line of defense techniques to mitigate this class
of attacks. The comparison is categorized based on the four channels exposed to the
attackers (Section 2.1). As Table 1 summarizes, none of them provides full protection
for the four channels against malicious scripts injected into victim web sessions. We
refer readers to Section 6 for a detailed comparison with previous solutions. We propose
a user-based end-to-end trusted path that comprehensively protects all the four channels.

Table 1: Various Techniques for Mitigating PISE Attacks
I
1

II
2

III
3

IV
4

I
1

II
2

III
3

IV
4

HTML5 Privilege Separation [18]
√

WebWallet [29]
√

HTML5 Data Confinement [8]
√ √

Secure UI Toolkit [16]
√ √ √

Object-Capability Sec Model [30,31]
√

Clickjacking Defenses [32]
√ √

PathCutter [24]
√ √

Cryptons [9]
√ √

Request Triggering Attribution [13]
√ √

DOMinator [33]
√

Adsentry [34]
√

Origin Bound Certificates [22]
√

USERPATH
√ √ √ √

1
Display Channel

2
Input Channel

3
Session Data Channel

4
Network Request Channel

2.3 Threat Model & Scope

We now briefly discuss the in-scope threats of our work. We consider the attacker to be
a standard web attacker [35] that is able to exploit script injection vulnerabilities in a
web application and browser’s add-ons running as JavaScript (not binary plugins) [36].
All attacker payloads are client-side scripts, and we assume an uncompromised web
server and web browser, as well as the underlying OS. We assume that the user is be-
nign, i.e., we do not aim to prevent an attack where an authenticated user attacks the
web applications within its own user authority. An HTTP parameter tampering attack,
wherein Alice might attack Elgg for profit (e.g., randomly add users to increase number
of friends), is such an example [37]. We also assume the security of user passwords,
i.e., the users do not disclose their passwords nor use the same password for different
websites. Lastly, although our approach is applicable to non-JavaScript-based attacks
in concept, our discussion here precludes malicious Flash scripts or Java Applets em-
bedded in web pages.

3 USERPATH Design & Security Properties

To protect user-owned resources in the web application from PISE attacks, we combine
various techniques to protect the channels exposed to attackers (Section 3.2). Our solu-
tion requires minor changes to today’s web browsers and web applications, and is easy
to use for end users.

Enabling Trusted Paths & User Sub-Origins in Web Browsers 7

3.1 Challenges & Key Ideas
Protection for sensitive user-owned resource should cover the entire life time of web
sessions, starting from user authentication to the teardown of the web session. We ex-
plain the challenges in doing so below.

SERVER-SIDE
PAKE MODULE

(1)
SECURE

UI

BROWSER
PAKE

Web Page Instance

NETWORK

BROWSER KERNEL

Backend server
with origin O

Client-side Server-side

(2)
UFRAME Instance
with origin O-Alice

(2)
(3)

Alice

Origin O

Fig. 2: Overview of USERPATH. The unshaded boxes are the contributions of our paper.
A USERPATH-enabled platform has (1) server- and client-side PAKE modules to carry
out PAKE protocol, (2) a web primitive called UFrame, and (3) secure UI elements.

Protecting User Credentials. Malicious scripts can exploit display channels to launch
in-application phishing attacks and steal the user’s password. Note that browser’s secu-
rity indicators (e.g., SSL lock icon, URL bar) do not help users recognize such attacks.
Those security indicators operate under the assumption that a web session in an origin is
trusted. Such an assumption becomes invalid with our threat model, as the attacks take
place within the same session of the victim’s origin. To achieve a secure authentication,
our idea is to allow a web browser to render secure login elements on the web applica-
tions (Section 4). Such elements are special UI controls rendered by the browser, which
can be easily verified by the user and cannot be tampered with by untrusted JavaScript
code. Once users enter their credentials, leaking these credentials to an untrusted envi-
ronment (a script or server) is not desirable. To address this critical problem, we employ
a PAKE protocol (Figure 2 Step 1) that enables the web browser to authenticate a user
to a web origin without directly exchanging credential information with the origin O.
Establishing Notion of User. After the successful authentication, another challenge is
to securely establish a notion of user inside a web session. We term this step as secure
delegation (Section 4), in which the browser creates a user sub-authority in origin O.
This step constitutes a form of authority delegation on the web. To achieve this goal, the
key idea is to conceptually split the web session into two partitions, one web session
running under the authority of the web application origin O, the other one running
under a user sub-origin OAlice. USERPATH ties all sensitive resources belonging to user
Alice under the sub-origin OAlice, which represents the explicit notion of Alice’s sub-
authority3 (Figure 2 Step 2). Note that code running in OAlice represents the authority
of Alice in O, and is more privileged than the origin O’s code.
End-to-End Trusted Path. Fully protecting the four vulnerable channels is challenging
with any single mechanism. Instead, we safeguard each vulnerable channel by provid-

3 This secure delegation process is akin to executing an su - alice command in a UNIX-
like system.

8 E. Budianto, Y. Jia, X. Dong, P. Saxena, and Z. Liang

ing the corresponding secure channel: a secure channel between the UFrame and the
backend server, a secure channel between the UFrame and the browser kernel compo-
nents, a secure visual channel, and a secure input channel – the latter two channels are
established with the web application user (Figure 2 Step 3). This constitutes an end-to-
end trusted path between the user and the server, as further discussed in Section 3.2.

3.2 USERPATH Design

Protecting User Credentials. To initiate the authentication process, USERPATH lever-
ages the standard authentication mechanism using username and password, which can
also be extended for SSO-based authentication (see Section 3.4). The process starts with
a user Alice visiting a web page with the origin O. Alice interacts with the application
under the authority of its web origin O (Figure 5 Step A). The web application invokes
a DOM API to draw a special “credential box” (see Figure 3) for Alice to enter her
password. The origin O decides the placement and location of the credential box on the
web page and Alice needs nothing more than her usual password for this step. Unlike
prevailing password boxes where the input is directly accessible to the web page, the
data entered by Alice in the credential box will stay in the memory of the browser and
is not accessible by the application code. Therefore, it prevents attacker’s scripts from
stealing the password. The url property of the credential box element identifies the
server-side script that handles user login.

Chrome area Color indicator

Credential boxes

Fig. 3: A web browser displaying creden-
tial boxes from example.com.

Client Server

Initial
Setup

Initial
Setup

Session Key
Derive

Ks

Derive
Session Key

Ks
Password P Verifier v

Compute
Proof M Verify

Proof M

Success,
use Ks

Deny

Fig. 4: The PAKE Protocol. A ses-
sion key S is derived and the server-
side PAKE verifies the message M
obtained from the client.

After Alice entered her credential information, the browser then executes a PAKE
protocol between the browser and the backend server using Alice’s password as a se-
cret, without directly exchanging Alice’s password with the backend server (Figure 5
Step B). We illustrate the high-level overview of a PAKE protocol in Figure 4. In this
protocol, the server O is assumed to have gotten a verifer v which was derived from the
Alice’s predefined password P . The verifier v is not a password, and cannot be used
by Alice for authentication. After Alice enters password P , the client-side PAKE sends
Alice’s user information and, based on the user information, the server-side PAKE de-
termines the corresponding verifier v. Client-side PAKE (based on user’ password) and
server-side PAKE (based on verifier v) simultaneously derive a session key Ks, as well

Enabling Trusted Paths & User Sub-Origins in Web Browsers 9

as an evidence value M (for client-side PAKE) and M ′ (for server-side PAKE), accord-
ing to a set of computations defined in [38]. The message M is later sent by the client to
and verified by the server-side PAKE, and vice versa for the message M ′. In case of a
successful authentication, the common key Ks will be used as a session key for further
communications between both parties.

To allow users to distinguish the credential input element drawn by USERPATH
from any other similar-looking elements rendered by malicious application code, the
browser displays a rectangle of color M in its chrome area and updates the color M
simultaneously around the credential box4. The user recognizes the authentic credential
elements by a visual check. Therefore, this approach defeats any phishing attempts from
malicious scripts.
Establishing Notion of User. After authentication is carried out using the PAKE proto-
col, USERPATH initiates the secure delegation to establish a user sub-authority OAlice.
USERPATH creates a UFrame to run Alice’s privileged code separated from the rest of
the application code within a web origin O. Unlike the temporary origin (e.g., sand-
boxed iframe [18]) which runs in a distinct privileged environment, the UFrame runs
within the user Alice’s authority with a higher privilege than any other parts in the web
page. As a privileged entity, the UFrame has one-way access to (1) the main page’s
DOM via special DOM APIs including access to secure UI elements; (2) a direct se-
cure callback channel to the browser; and (3) a dedicated XMLHttpRequest object
to make HTTP requests to the backend server. USERPATH privilege-separates user-
owned data from being accessed by the less-privileged application code running in O’s
authority, as well as separates all code that processes user events and the associated
user-owned data.

Fig. 5: Sequence of operations in a USERPATH-enabled session.

So far, USERPATH ensures that the sensitive data in UFrame-protected code is not
accessible to the less-privileged code (e.g., malicious JS code). But, how to make sure
that the UFrame code itself is not initialized with the attacker’s payload when it is
fetched from the backend server? The UFrame code from the server can be hijacked

4 The browser dynamically decides a foreground text color in the credential input element that
has high contrast with the current background color M and randomizes it every t=5 seconds.
To quantitatively measure the entropy, we set M to be randomly chosen from a palette of RGB
code colors. This gives a total entropy of 24 bits.

10 E. Budianto, Y. Jia, X. Dong, P. Saxena, and Z. Liang

by malicious scripts using a variety of ways, such as DOM clobbering [39] or pro-
totype hijacking of XMLHttpRequest object [40]. This lets an attacker create fake
UFrames or tamper with the original content of a UFrame. In order to securely dele-
gate user-owned resource to the UFrame, the backend server signs the code with Ks

and passes the code for the UFrame to the browser at the initialization step. Once the
code is received by the browser, it checks the integrity and authenticity of the code
with respect to Ks. Subsequently, the browser bootstraps the UFrame and provides a
dedicated XMLHttpRequest channel to securely communicate back to the server’s
origin. At this point, USERPATH has established a secure UFrame ↔ Server channel.
Note that we consider the server to be uncompromised in our threat model. If a web
application developer wishes to isolate users’ data better on the server side, several pre-
vious solutions such as CLAMP [10] and DIESEL [11] can be used in conjunction with
USERPATH’s abstractions.

Once a UFrame is initialized and executed during the web session, user-owned re-
sources (i.e., JavaScript heap objects of the UFrame) are isolated from the less-privileged
code. These sensitive user-owned resources include credit card information, sensitive
images, secret key information derived from the authentication process, and other sen-
sitive data tied to a user. To ensure compatibility with the existing web application,
the users should be able to interact with (e.g., view or input into) these resources. For
example, bank account number is a sensitive user-owned resource and this needs to
be displayed or entered by Alice when she checks her transaction history. USERPATH
introduces a set of secure DOM APIs (Table 2) to create secure input elements (e.g.,
textboxes, textareas) and secure display elements (e.g., images and styled-texts). Se-
cure elements are akin to standard HTML input and display elements, except that these
elements are not accessible to scripts outside the UFrame on the web origin O. For in-
stance, only event handlers (e.g., keyboard inputs and mouse clicks) inside the UFrame
code can access the secure display and input elements, and these handlers cannot be
overridden by code outside the UFrame. Therefore, USERPATH establishes a secure
input and visual channel to safeguard sensitive display and input elements.

End-to-End Trusted Path. Finally, a UFrame needs to communicate back to the server.
The main challenge is that the server needs to disambiguate HTTP requests generated
by the UFrame in response to the authentic user interaction, as opposed to fake requests
generated by malicious scripts via PISE attacks. USERPATH handles this issue by cre-
ating a dedicated network channel for the UFrame code. Inside the initialized UFrame
code, the server embeds a set of nonces S called user interaction token set (Figure 5
Step C) that can be used to generate resource access HTTP requests from client side.
These tokens can only be attached by the browser kernel as a custom HTTP header
X-UFRAME when the UFrame-dedicated XMLHttpRequest is invoked (Step D).

Teardown. As the user Alice logs out of O, the server invalidates the session key Ks,
and sets a custom HTTP header X-USERPATH:Session-destroy in HTTP re-
sponse for the log out request (Figure 5 Step E). After getting this response, the browser
destroys all user interaction tokens for the session and the session key Ks. To allow ses-
sion reconnection, similar to cookies, the browser caches the user interaction tokens and
Ks until the user logs out. The server then redirects the request to the login page if the
key and tokens expire.

Enabling Trusted Paths & User Sub-Origins in Web Browsers 11

Table 2: Secure DOM APIs for UFrame
Downcall API Description Upcall API Description

createSecElement Create a secure UI element storeSecretKey
Store the key Ks that is derived from
PAKE protocol

getSecElementById
Get the secure UI element’s
object by ID

updateUFrameCont Update the UFrame code or data content

setSecElmAttr
Set the property of an object
with the corresponding value

createContext
Create a UFrame context that runs with
user privilege. It lets the UFrame access
privileged APIs

getSecElmAttrVal
Get the property’s value of an
object

removeSecretKey
Remove the secret key Ks during
teardown process

deletePAKESesKey
Delete the session key Ks from
the browser kernel

removeUIToken
Remove the interaction token T during
teardown process

3.3 Security Properties: Putting it together
USERPATH enforces the following security semantics, which ensures resilience against
PISE attacks.

– P0: Safe Mutual Authentication & Ks Establishment. Mutual authentication be-
tween user Alice and the server is required for web servers to securely delegate user
Alice’s authority OAlice to client-side code within its web origin’s authority O. This
delegation is bootstrapped by Alice’s user name and password. The secure delega-
tion process must ensure that credential information does not leak outside Alice’s
authority, such as to attacker-controlled domains. After successful authentication, a
session key Ks is derived. The key Ks must remain unforgeable, unguessable, and
unique during the sessions.

– P1: Secure Delegation. A UFrame code that is passed from the backend server
needs to be signed by Ks that is derived from mutual authentication between user
and web server. Once web browser receives the content of the UFrame, it has to
check the authenticity of the code with respect to Ks.

– P2: Post-initialization Security of UFrame. All sensitive data and code must be
kept isolated inside a UFrame. The rest of the application code outside UFrame
must not be able to access this data and code whatsoever.

The properties P0, P1 and P2 serve as the basis for subsequent security properties
P3, P4, and P5 described as follows.

– P3: Secure Visual and Input Channels for Users
Visual channel. We reuse the standard secure visual channel that requires display,
intent, spatio-temporal, and pointer integrity to ensure distinguishability of secure
UI elements from the non-secure ones. Secure UI elements cannot be obstructed or
tampered with by untrusted code. Its elements should be able to display confidential
information to users and not be accessible to the non-UFrame code. This has been
explored in other research works [15, 16, 32] and is not part of our contributions.
Input Channel. All keyboard inputs to secure input elements go directly to the
browser. The confidentiality and integrity of input action should not be violated
by untrusted scripts. The browser should be able to distinguish genuine user inter-
actions from those mimicked by JavaScript code.

12 E. Budianto, Y. Jia, X. Dong, P. Saxena, and Z. Liang

– P4: Secure Browser ↔ UFrame Channel. A privileged UFrame can communi-
cate to the browser directly in order to create secure UI elements or to read contents
in DOM objects securely with no possibility of interception from untrusted code.
The confidentiality, integrity and authenticity of such communications are main-
tained by the browser.

– P5: Secure UFrame ↔ Server Channel. Web server should be able to distinguish
requests generated from the authentic user interaction, and those that are not. The
communications between the UFrame and the server are protected in their confi-
dentiality and integrity.

Due to space constraints, we give a more thorough example-by-example security
analysis in our technical report [20].

3.4 Compatibility & Usability Implications
Our mechanism can be easily extended to handle authentication via Single-Sign On
(SSO). If the server O delegates authentication to an SSO provider S, a separate HTTPS
connection is established from the browser to S. Thereafter, the credential input element
uses the username and password to initiate the PAKE authentication with S. Upon suc-
cessful completion, the browser obtains a shared key Ks with S, which is also com-
municated by S to O in a separate channel. O can create a server-side representation
for Alice using Ks. The browser thus creates a UFrame with the authority of Alice@S,
which can isolate Alice@S from another user.
Usability Implications. First, we assume that web application users will always check
the background color of any credential-seeking elements, and only enter their passwords
if the color matches that of a rectangle displayed in the browser’s chrome area. Second,
we rely on prior research [15,16,32] to ensure the visual, temporal and pointer integrity
of a secure visual channel. Admittedly, the usability of such a scheme has not been fully
evaluated; a thorough user study on its usability merits separate research (c.f., [41,42]).

4 Implementation in Chromium
We summarize the high-level abstraction of our end-to-end solution and detail how it is
implemented in Chromium web browser.
Implementation Overview. We implemented UFrame and trusted path components
by modifying Chromium5, the open source version of Google Chrome. We patched
Chromium version 12 by adding roughly 475 lines of code spreading over 26 files inside
Chromium codebase. This does not include the logic for performing PAKE procotol,
which was implemented separately by us as a plug-in. Apart from the browser, we also
modified 20 PHP-based server-side applications which we discuss in Section 5.

We have released our patch to Chromium and the modified web applications on a
public repository [20]. We have also released a demo video showing how USERPATH
offers smooth user experience with our running example Elgg [21].
Authentication Step. As discussed in Section 3.2, once the browser identifies credential
element on the HTML code, it renders this element and applies a random color on
the element’s background. To do so, we develop an NPAPI plug-in for the browser to

5 http://www.chromium.org/

Enabling Trusted Paths & User Sub-Origins in Web Browsers 13

render such element and update the display color in web browser’s chrome bar. As the
credential element is rendered and called through privileged API, this is not accessible
from web application code. To make the existing authentication process be USERPATH-
compliant, developers just need to embed the plug-in into original web application’s
login page.

1 <uframe
2 src=’http://www.example.com/content.php’
3 sign=’8d4f9a3112e700437e5cd783cc621’
4 token=’qvrz-clwo-xiud-jawz’>
5
6 // phone number obtained from the server
7 var jsonData = {"type":"display","elm":"div","

id","phone-info","value":"88880000","
parentNode":"div-container"};

8 // create secure div element append it into
existing DOM element

9 var phoneElm = createSecElement(jsonData);
Internal DOM Representation

HEAD

DIV

id : div-container

DIV

id : phone-info
value : 88880000
type : secure

DIV

class : middle

DOM Type

Non-Secure

Secure

b b b

b b b

10 //-- Add a user as admin
11 var xhr = new XMLHttpRequest();
12 xhr.open(’POST’, ’http://’+URL+’/elgg/action/useradd’, true);
13 xhr.setRequestHeader(’Content-type’, ’application/x-www-form-urlencoded’);
14
15 var username = getSecElementById(’username’).getSecElmAttrVal(’value’);
16 var data = "username="+username;
17 ...
18 // secure resource access to Elgg server
19 xhr.send(data);
20 </uframe>

Listing 1.1: Trusted Code Running in a UFrame. This piece of code executes under
the user’s authority OAlice to create a secure div element into the web page and
secure HTTP request to add a user as an admin. Details elided for brevity.

Subsequently, we employ the PAKE protocol to mutually authenticate user and the
backend server by integrating TLS-SRP [43] — a PAKE-based web authentication that
operates at the transport layer — into USERPATH. On the web browser, we install a
browser level TLS-SRP module that receives input from special credential box and
carries out PAKE protocol with the specific origin O specified in url property of the
UFrame code. The module consists of 381 C++ lines of code in total, which is roughly
2.6 MB in size. At the server side, we apply a patch to the Apache web server to handle
server-side TLS-SRP authentication. This patch is available online [44].
Secure Delegation. After the authentication step finishes, the browser creates a UFrame
for executing trusted JavaScript code. In this step, the browser already has a shared
key Ks that can be used to secure communications with the server. Server-side web
application then signs the content of the UFrame using the key Ks and sends it to the
browser, embedded in a custom HTML tag named <UFRAME>. Whenever the browser
encounters the UFrame content during parsing, it checks the integrity and authenticity
of the UFrame code, and creates an iframe with a random origin OR = PRG(Ks),
where PRG(KS) is a pseudorandom generator function that takes the shared key Ks

as the seed.

14 E. Budianto, Y. Jia, X. Dong, P. Saxena, and Z. Liang

We leverage existing mechanisms in the Chromium web browser to establish trusted
paths. For ease of implementation, we modify isolated worlds [36], a feature provided
by Chromium to separate execution context between two JavaScript code. This abstrac-
tion offers similar isolation mechanism as what iframe-based isolation with random
origin provides.
Trusted Path Implementation. We use our running example in Section 2 to illus-
trate how we implement the trusted path execution inside a UFrame. As shown in List-
ing 1.1, UFrame code is purely written in JavaScript, and it has additional access to
secure DOM APIs. As an example, we label contact information as a sensitive ele-
ment to prevent them from being leaked to malicious code running on a web page.
In Listing 1.1 line 9, a secure DOM element is created by invoking a downcall API
createSecElement(). This API receives a JSON object jsonData as an in-
put, and creates a secure display element based on data from jsonData. The ob-
ject jsonData has user-owned contact information, which is sensitive data passed
from the backend server to the browser. In Listing 1.1 line 10-19, we create a POST
request directly from the UFrame using dedicated XMLHttpRequest to protect the
client-side request to Elgg server. The data that is sent through the POST request (e.g.,
username, password) is obtained from user input on the secure input elements (List-
ing 1.1 line 15). As the XMLHttpRequest object is being called from UFrame, the
browser treats the request as secure resource access to the server and appends special
user interaction token for that request.

In our Chromium implementation, we make small changes in the following C++
classes: ScriptController, V8IsolatedContext and V8NodeCustom. We
add a new data structure called IsolatedContextMap to maintain the relation be-
tween code running on the web page or the UFrame, represented by a context identifier.
Therefore, the system can recognize the context where a JavaScript code is running by
checking the data structure. Finally, we modify Chromium to mediate access from a
JavaScript object to a DOM Node. The logic for mediating access to sensitive DOM
element is as follows: as each element of the DOM is represented by an object, we add
a special flag for every object that is created under specific privileged functions. We
then modify the logic for traversing an object in a DOM tree, so that those objects with
privileged flag will not be visible to the web application code running under origin O.

5 Evaluation

We deploy USERPATH on 20 open source web applications (as Table 4 shows) from 8
different categories (as Table 5 presents) including 3 frameworks (WordPress, Joomla,
and Drupal). These web applications are statistically popular, built using PHP, and cover
a wide range of functionalities. We evaluate our solution from four aspects – scope
of vulnerabilities USERPATH can eliminate, case study of elgg, applicability to web
applications & TCB reduction, and USERPATH’s performance.

5.1 Scope of Vulnerabilities

We study a set of vulnerabilities in the web applications that can lead to PISE attacks.
Among the 20 open source web applications that we study, there are 325 vulnerabilities
on those web applications that can be exploited to launch the attacks. Most of them

Enabling Trusted Paths & User Sub-Origins in Web Browsers 15

Table 3: List of Vulnerabilities in 20 Open-source Web Applications. These vulnerabil-
ities might lead to PISE Attacks

App Name &
Version Popularity Indicator PHP # of

LOC Sensitive User Data # of Relevant Vulnerabilities

Elgg
v1.8.16 >2,800,000 downloads 114735

Private profile data and admin
options (set user as admin and
add new user)

3 (CVE-2012-6561: XSS, EDB-ID
17685 and 8993: XSS)

Friendica
v3.2.1744

Forbes’s Top 3 social
network application 144555

Private contact, friend list, and
message data

1 (Bug ID 0000535: Reflected
XSS)

Roundcube
v0.9.4 >2,400,000 downloads 109663

Address book, settings and
private emails

12 (CVE-2013-5646: XSS and
CVE-2009-4077: CSRF)

OpenEMR
v4.1.2

Serving >30,000,000
patients 495987

Personal info, medical
records, and payment

2 (ZSL-2013-5129 and 103810:
XSS)

ownCloud
v5.0.13 >350,000 users 337192

Contacts, export files and user
share options

15 (CVE-2013-1942: XSS and
CVE-2012-4753: CSRF)

HotCRP
v2.61

Used by USENIX,
SIGCOMM, etc. 36333

Contact information, review
and privilege settings 3 (Bug ID 3f143d2: XSS)

OpenConf
v5.30

Used by ACSAC, IEEE,
W3C, ACM, etc. 17589

Contact info, review, edit
submission and role setting

1 (CVE-2005-0407: XSS and
CVE-2012-1002: XSS)

PrestaShop
v1.5.6.0

Powering >150,000
online stores 250660

Personal info, credit slips,
addresses and checkout info

2 (CVE-2008-6503 and
CVE-2011-4544: XSS)

OpenCart
v1.5.6 >250,000 downloads 93770

Account, address book and
checkout information 1 (CVE-2010-1610: CSRF)

AstroSpaces
v1.1.1

DZineBlog’s Top 10
open social network. 6972

Profile information, private
message and admin settings 1 (Bug ID 001: XSS)

Magento
v1.8.0.0

Used by >200,000
business 928991

Account info, address
information and checkout info 1 (CVE-2009-0541: XSS)

Zen Cart
v1.5.1 >3,000,000 downloads 95381

Account, profile and checkout
information

4 (CVE-2011-4567 and
CVE-2012-1413: XSS)

osCommerce
v2.3.3.4

>12,000 registered sites
with >270,000 members 60081

Account, profile and checkout
information

10 (CVE-2012-1792 and
CVE-2012-2935: XSS)

StoreSprite
v7.24.4.13

Incorporate 14 payment
gateways 30350

Account, profile and checkout
information 1 (CVE-2012-5798: XSS)

CubeCart
v5.2.4

Powering thousands of
online stores 11942

Account, profile and checkout
information 1 (CVE-2008-1550: XSS)

WordPress
v3.6

Used by >60,000,000
websites 135540

Account, contact and setting
information

91 (CVE-2013-5738: XSS and
CVE-2013-2205: XSS)

Joomla
v3.2.0 >35,000,000 downloads 227351

Account, contact and setting
information

45 (CVE-2013-3059 and
CVE-2013-3267: XSS)

Drupal
v7.23 >1,000,000 downloads 43835

Account, contact and setting
information

126 (CVE-2012-0826: CSRF and
CVE-2012-2339: XSS)

Piwigo
v2.5.3

Translated into 50
languages 143144

User’s management,
permission, sensitive profile

4 (CVE-2013-1468: CSRF and
CVE-2012-2209: XSS)

X2CRM
v3.5.6

>4,500 installations
across 135 countries 747261

Account, contact management
& information 1 (CVE-2013-5693: XSS)

have been patched and recorded in the vulnerability database, but some of them are still
unpatched.

Table 3 lists our case study and summarizes the number of vulnerabilities, along
with the CVE ID for the corresponding vulnerability6. Among those 20 web applica-
tions that we study, all of them have at least one vulnerability to a subset of PISE attacks
namely XSS or CSRF attacks. Some of them even have more than ten vulnerabilities of
the same attack vector. To name one of them, PrestaShop has two critical vulnerabilities.
One type of vulnerability (marked by ID CVE-2008-6503) allows an attacker to inject
arbitrary web scripts to the login page. The other vulnerability (marked by ID CVE-

6 Due to the page limit, we show the study of 8 applications from 8 different categories. For the
study on all 20 applications, please check our technical report [20].

16 E. Budianto, Y. Jia, X. Dong, P. Saxena, and Z. Liang

2011-4544) lets the attacker to exploit the file management process of an administrator
to launch an XSS attack.

5.2 Case Study : Elgg & OpenCart

In this section, we detail our experience with real-world case studies to illustrate the
steps taken for retrofitting web applications with USERPATH. We evaluate USERPATH
with the following goals: (1) protecting the “add new user” feature in Elgg social net-
work, given the presence of XSS vulnerabilities and (2) protecting the “reset password”
feature in OpenCart, given a CSRF vulnerability in the web application. Based on those
vulnerabilities, we thus construct four proof-of-concept attacks that tamper with the
four channels discussed in Section 2.1. Due to space constraints, we describe the attacks
and specify the way USERPATH prevents those attacks in our technical report [20].
Code Changes. First, we made small changes in actions/login.php (Elgg) and
account/login.php (OpenCart) to let the browser render special credential boxes
and initiate a TLS-SRP-based authentication with the server at their respective origins.
Secondly, in the “add new user” page of Elgg, we privilege-separated the logic for
displaying username, email address, password, admin flag, and a form request button
into a UFrame section. Instead of creating those elements using HTML, the elements
need to be dynamically created from within a UFrame to let them be rendered as secure
elements. All the changes were made in a PHP file forms/useradd.php. Likewise,
we protect two HTML input elements for putting in new password and a confirmation
button by implementing the logic for this feature separately inside a UFrame. All these
changes were made by modifying a file account/password.php. A complete set
of technical changes is described in [20].
Result & Challenges. We successfully retrofitted USERPATH to Elgg and OpenCart by
adding 270 and 266 lines of PHP code in their application code, respectively. The TCB
size of the UFrame in the modified Elgg is 46x and 66x smaller than the size of TCB in
vanilla web applications. After implementing those changes, we successfully protect the
sensitive resources in the vulnerable applications from PISE attacks. We demonstrate
some of the attacks in Elgg and how USERPATH defends against those through demo
videos available in [21].

The main challenge of adopting USERPATH to web applications is the difficulty in
locating the functionality we need to modify, because both applications were built using
their own toolkit. After understanding the toolkit, the modification effort is straightfor-
ward. It took 2 days in total for us to enable USERPATH in Elgg and OpenCart.

5.3 Applicability to Web Applications & TCB Reduction

We successfully retrofit all 20 web applications to adopt USERPATH. Among these
applications, we manually choose several data and operations that are sensitive to users
(summarized in Table 3) and modify the PHP files where these data and operations are
processed. In addition, we demonstrate the practicality of USERPATH by summarizing
the adoption effort and TCB reduction of 20 retrofitted web applications in Table 4. We
measure the adoption effort by the following benchmarks: number of additional code,
number of modified files, and number of days spent in modifying the web application.
Besides, we also measure TCB reduction by comparing the initial TCB size (i.e., the
web page size) and the final TCB size after implementing USERPATH.

Enabling Trusted Paths & User Sub-Origins in Web Browsers 17

Table 4: Adoption Effort and TCB Reduction after Implementing USERPATH in 20
Open-Source Web Applications

App Name USERPATH
LOC

(JS+PHP)

Original TCB
(KB)

TCB after
implementing

USERPATH (KB)

TCB
Reduction

Factor

of
Modified

Files

of Days
Spent

Elgg 270 414.6 9.1 46x 4 2
Friendica 176 1053.8 5.3 199x 13 1

Roundcube 96 946.0 8.0 118x 4 2
OpenEMR 141 53.6 6.6 8x 7 1.5
ownCloud 106 555.2 2.9 191x 4 1.5
HotCRP 139 184.5 4.6 40x 5 1

OpenConf 151 55.9 2.4 23x 5 1
PrestaShop 111 580.3 5.8 100x 5 1
OpenCart 266 754.8 11.5 66x 6 2

AstroSpaces 119 67.3 3.5 19x 5 1
Magento 227 987.0 11.2 88x 4 1.5
Zencart 130 241.8 6.5 37x 6 1

osCommerce 122 425.8 5.9 72x 5 1
StoreSprite 133 513.8 4.6 112x 4 1
CubeCart 118 469.2 6.2 76x 5 1
WordPress 102 308.7 3.9 79x 4 1

Joomla 87 819.3 3.1 264x 3 1
Drupal 72 199.6 2.6 77x 3 1.5
Piwigo 216 673.5 7.8 86x 6 1

X2CRM 217 1380.4 6.1 226x 10 2

We find that USERPATH requires small changes to the existing web application
code. Given the set of sensitive user-owned data and functionalities that we want to
protect from PISE attacks, we only need to add at most 270 lines of PHP and JavaScript
code into the web application, with 167 lines of code added for each web application
on an average (see column “USERPATH LOC” in Table 4 for LOC of all the 20 appli-
cations). Moreover, we empirically show that we achieve the reduction of 8x to 264x
in TCB for our case studies. We measure this reduction by comparing the size of final
TCB (e.g., the UFrame code) with the entire web page size (see column IV in Table 4).
We treat the web page size as the initial TCB size as we need to trust the entire web
page in order to protect our sensitive data and operation.

We also find that modifying web applications according to USERPATH incurs rel-
atively small burden on the developer side. On the average, given a set of sensitive
user-owned resources to protect in Table 3, a developer needs to modify 6 files within
1.3 days for one web application to make it USERPATH-compliant.

5.4 Performance
The main performance factor that impact our solution include: PAKE-based secure del-
egation, the UFrame creation, and new secure elements introduced into DOM. As our
demo video [21] shows, in our experiments with the 20 web applications, we do not
observe any slowdown in user interactions with the applications. Since the login phase
contains all the three factors, we measure the overhead of the login time for 20 appli-
cations from 8 different categories. Table 5 summarizes the results of the login time
(averaged on 5 runs) between the click on the login button and the next page finishes
loading. We can see that USERPATH introduces the negligible performance overhead to
these applications. This confirms our speculation that the minimal performance over-
head that might incur from USERPATH would be largely masked by the timing variances
in network requests.

18 E. Budianto, Y. Jia, X. Dong, P. Saxena, and Z. Liang

Table 5: Time Taken for Login without & with USERPATH (in seconds)
Category Application Name Time without

USERPATH
Time with
USERPATH

Overhead

Social Networking Elgg 3.38 3.45 2.07%
Social Networking Friendica 4.88 5.02 2.87%
Social Networking AstroSpaces 0.397 0.406 2.27%
Email Application Roundcube 7.28 7.49 2.88%

Health Information System OpenEMR 3.238 3.338 3.09%
Conference Management System HotCRP 1.037 1.065 2.70%
Conference Management System OpenConf 0.173 0.176 1.73%

E-commerce Application OpenCart 4.26 4.40 3.29%
E-commerce Application PrestaShop 3.52 3.56 1.14%
E-commerce Application Magento 3.02 3.07 1.66%
E-commerce Application Zencart 1.16 1.2 2.83%
E-commerce Application osCommerce 7.38 7.46 1.08%
E-commerce Application StoreSprite 5.03 5.13 1.99%
E-commerce Application CubeCart 3.05 3.09 1.31%

Content Management System WordPress 3.708 3.777 1.86%
Content Management System Joomla 2.74 2.81 2.55%
Content Management System Drupal 1.56 1.62 3.44%

File Sharing System Piwigo 1.55 1.57 1.09%
File Sharing System ownCloud 5.2 5.36 3.08%

Customer Management System X2CRM 9.105 9.364 2.84%

6 Related Work

In this section, we discuss recent research works that are related to our solution.
Privilege Separation. Privilege separation reduces the potential damages of compro-
mised software components by partitioning software into different compartments. It
has been widely adopted in traditional applications [45,46], web browsers [47–49], and
web applications [18, 34]. View isolation implemented by PathCutter [24] separates
code running in different iframes (views) as well as requests coming out of different
views. Thus, it prevents unwanted access to data between views, either directly or in-
directly via sending requests to the server. Our solution in this paper applies privilege
separation using a user-centric approach. We bring in user sub-origins to the present
web, and confine user data only to code delegated by the user sub-origin.
Data Confinement. Confining data in web applications has recently received attention
in the research community. For instance, Roesner et al. propose ACG, which allows
users to directly grant access to user-owned resources by UI interaction with such gad-
gets [15]. Our solution shares the similar insight as to confine user data back to user-
sanctioned operations, although we face different challenges in protecting user data
on the web. Unlike resources on OS, the distributed nature of the web and decoupled
server-client architecture requires additional secure channels to confine user data on the
web. We address such challenges by integrating TLS-SRP into web authentication to
build an end-to-end trusted path from the client-side application code to the web server.

Several other works have been proposed to confine sensitive data on the web [8] or
cloud platform [50]. Compared to these proposals, our solution does not confine user
data according to any application-specific configuration or data propagation policies;
instead, it ensures that user data only flows within user sub-origin, both at the client and
the server side.
Trusted Paths. Building trusted paths across untrusted components has practical sig-
nificance today. Prior works examine potential solutions for trusted paths between user-

Enabling Trusted Paths & User Sub-Origins in Web Browsers 19

interaction elements and software applications [41, 51, 52]. Similarly, Web Wallet re-
designs browser’s user interfaces to protect user credentials against phishing attacks [29].
The usability of trusted path proposals has been evaluated in real-world usage [42, 51].
Zhou et al. propose a hypervisor-based general-purpose trusted path design on com-
modity x86 computers, and present a case study on user-oriented trusted path [53].

Our solution builds an end-to-end trusted path by utilizing the existing functionality
of the web browser and server. This trusted path connects the user at the client side to
the server, ensuring that only user-delegated sub-origins can access protected data. Such
a trusted path differs from a recent proposal on a trusted path between user keyboard in-
puts and the web server, where no explicit notion of users is established [9]. Moreover,
compared to it, our solution requires much smaller changes to web browsers; by piggy-
backing on passwords for authentication, we avoid the usability challenges in requiring
users to generate and upload SSL keys as in [9]. Dong et al. propose a solution to iden-
tify requests crafted by injected scripts from those triggered by user interactions [13].
We apply a similar mechanism in our solution as part of input channel protection. How-
ever, their work focuses on monitoring and diagnosing web application behavior, and
does not yield a solution for protecting data in web applications.
Injection Attack Prevention. As we discuss in this paper, injected scripts pose major
threats to web applications. Previous endeavors of security researchers have devised nu-
merous solutions to prevent or mitigate script injection, such as CSP [1], blueprint [54],
DSI [55], and Noncespaces [56]. Nevertheless, in practice, it is difficult to eliminate all
script injection vectors [2]. Our solution complement these solutions on script injection
prevention as a second line of defense.

7 Conclusion & Acknowledgments

In this paper, we propose new abstractions to bring in the explicit notion of user sub-
origins into the present web and establish an end-to-end trusted path between the user
and the web server. We show that our solution eliminates a large amount of PISE at-
tacks in real-world applications, and can be integrated with today’s web browsers and
applications with minimal adoption cost.

Acknowledgments. We thank the anonymous reviewers and our shepherd William
Robertson for their feedback and suggested improvements for this work. We thank
Kailas Patil, Atul Sadhu, Loi Luu, and Shweta Shinde for their comments on an early
presentation of this work. This work is supported by the Ministry of Education, Singa-
pore under Grant No. R-252-000-495-133. Xinshu Dong is supported by the research
grant for the Human Sixth Sense Programme at the Advanced Digital Sciences Center
from Singapore’s Agency for Science, Technology and Research (A*STAR).

References

1. W3C: Content security policy 1.0. http://www.w3.org/TR/CSP/
2. Johns, M.: Preparedjs: Secure script-templates for javascript. In: Detection of Intrusions and

Malware & Vulnerability Assessment. (2013)
3. Chen, P., Nikiforakis, N., Huygens, C., Desmet, L.: A dangerous mix: Large-scale analysis

of mixed-content websites. In: Information Security Conference. (2013)

20 E. Budianto, Y. Jia, X. Dong, P. Saxena, and Z. Liang

4. Trend Micro: New york times pushes fake av malvertisement. http://goo.gl/BtjgPc
5. Verizon: 2013 data breach investigation report. http://www.verizonenterprise.

com/DBIR/2013/
6. Enigma Group: Facebook profiles can be hijacked by chrome extensions malware. http:

//underurhat.com/hacking
7. Liu, L., Zhang, X., Yan, G., Chen, S.: Chrome extensions: Threat analysis and countermea-

sures. In: Network and Distributed System Security Symposium. (2012)
8. Akhawe, D., Li, F., He, W., Saxena, P., Song, D.: Data-confined html5 applications. In:

European Symposium on Research in Computer Security. (2013)
9. Dong, X., Chen, Z., Siadati, H., Tople, S., Saxena, P., Liang, Z.: Protecting sensitive web

content from client-side vulnerabilities with cryptons. In: Proceedings of the 20th ACM
Conference on Computer and Communications Security. (2013)

10. Parno, B., McCune, J.M., Wendlandt, D., Andersen, D.G., Perrig, A.: Clamp: Practical pre-
vention of large-scale data leaks. In: IEEE Symposium on Security and Privacy. (2009)

11. Felt, A.P., Finifter, M., Weinberger, J., Wagner, D.: Diesel: applying privilege separation
to database access. In: ACM Symposium on Information, Computer and Communications
Security. (2011)

12. Chen, E.Y., Gorbaty, S., Singhal, A., Jackson, C.: Self-exfiltration: The dangers of browser-
enforced information flow control. In: Web 2.0 Security and Privacy. (2012)

13. Dong, X., Patil, K., Mao, J., Liang, Z.: A comprehensive client-side behavior model for
diagnosing attacks in ajax applications. In: ICECCS. (2013)

14. Projects, T.C.: Per-page suborigins. http://goo.gl/PoH5pY
15. Roesner, F., Kohno, T., Moshchuk, A., Parno, B., Wang, H.J., Cowan, C.: User-driven access

control: Rethinking permission granting in modern operating systems. In: Proceedings of
the 2012 IEEE Symposium on Security and Privacy. (2012)

16. Roesner, F., Fogarty, J., Kohno, T.: User interface toolkit mechanisms for securing interface
elements. In: User Interface Software and Technology. (2012)

17. Dong, X., Hong, H., Liang, Z., Saxena, P.: A quantitative evaluation of privilege separation
in web browser designs. In: European Symposium on Research in Computer Security. (2013)

18. Akhawe, D., Saxena, P., Song, D.: Privilege separation in html5 applications. In: USENIX
Security. (2012)

19. Oiwa, Y., Takagi, H., Watanabe, H., Suzuki, H.: Pake-based mutual http authentication for
preventing phishing attacks. In: World Wide Web Conference. (2009)

20. Budianto, E., Jia, Y.: Summary of source code modification, chromium patches, and userpath
technical report. https://github.com/ebudianto/UserPath

21. Budianto, E., Jia, Y.: Url for USERPATH demo video. https://github.com/
ebudianto/UserPath/wiki/DEMO-Video-URLs

22. Dietz, M., Czeskis, A., Balfanz, D., Wallach, D.S.: Origin-bound certificates: A fresh ap-
proach to strong client authentication for the web. In: USENIX Security. (2012)

23. Jackson, C., Simon, D.R., Tan, D.S., Barth, A.: An evaluation of extended validation and
picture-in-picture phishing attacks. In: Proceedings of 1st USEC. (2007)

24. Cao, Y., Yegneswaran, V., Porras, P., Chen, Y.: Pathcutter: Severing the self-propagation
path of xss javascript worms in social web networks. In: Network and Distributed System
Security Symposium. (2012)

25. Hansen, R., Grossman, J.: Clickjacking. http://goo.gl/p7dxIC
26. YGN Ethical Hacker Group: Elgg 1.7.9 xss vulnerability. http://goo.gl/XUeqis
27. CVE: Cve-2012-6561 xss vulnerability in elgg. http://goo.gl/mmW8bM
28. Barth, A., Jackson, C., Mitchell, J.C.: Robust defenses for cross-site request forgery. In:

Conference on Computer and Communications Security. (2008)
29. Wu, M., Miller, R.C., Little, G.: Web wallet: Preventing phishing attacks by revealing user

intentions. In: Symposium On Usable Privacy and Security. (2006)

Enabling Trusted Paths & User Sub-Origins in Web Browsers 21

30. Bhargavan, K., Delignat-Lavaud, A., Maffeis, S.: Language-based defenses against untrusted
browser origins. In: USENIX Security. (2013)

31. Maffeis, S., Mitchell, J.C., Taly, A.: Object capabilities and isolation of untrusted web appli-
cation. In: IEEE Symposium on Security and Privacy. (2010)

32. Huang, L.S., Moshchuk, A., Wang, H.J., Schechter, S., Jackson, C.: Clickjacking: attacks
and defenses. In: USENIX Security. (2012)

33. Zhou, Y., Evans, D.: Protecting private web content from embedded scripts. In: European
Symposium on Research in Computer Security. (2011)

34. Dong, X., Tran, M., Liang, Z., Jiang, X.: Adsentry: comprehensive and flexible confinement
of javascript-based advertisements. In: ACSAC. (2011)

35. Akhawe, D., Barth, A., Lam, P.E., Mitchell, J., Song, D.: Towards a formal foundation of
web security. In: Computer Security Foundations. (2010)

36. Barth, A., Felt, A.P., Saxena, P., Boodman, A.: Protecting browsers from extension vulnera-
bilities. In: Network and Distributed System Security Symposium. (2010)

37. Bisht, P., Hinrichs, T., Skrupsky, N., Bobrowicz, R., Venkatakrishnan, V.N.: Notamper: au-
tomatic blackbox detection of parameter tampering opportunities in web applications. In:
Conference on Computer and Communications Security. (2010)

38. Wu, T.: The secure remote password protocol. In: Network and Distributed System Security
Symposium. (1998)

39. The Spanner: Dom clobbering. http://goo.gl/ZOLmal
40. Adida, B., Barth, A., Jackson, C.: Rootkits for javascript environments. In: WOOT. (2009)
41. Ye, Z.E., Smith, S.: Trusted paths for browsers. In: USENIX Security. (2002)
42. Libonati, A., McCune, J.M., Reiter, M.K.: Usability testing a malware-resistant input mech-

anism. In: Network and Distributed System Security Symposium. (2011)
43. Engler, J., Karlof, C., Shi, E., Song, D.: Is it too late for pake? In: Proceedings of Web 2.0

Security and Privacy 2009
44. Slack, Q.: Tls-srp in apache mod ssl. http://goo.gl/cHMoau
45. Provos, N., Friedl, M., Honeyman, P.: Preventing privilege escalation. In: USENIX Security.

(2003)
46. Brumley, D., Song, D.: Privtrans: automatically partitioning programs for privilege separa-

tion. In: USENIX Security. (2004)
47. Grier, C., Tang, S., King, S.: Designing and implementing the op and op2 web browsers.

ACM Transactions on the Web (2011)
48. Wang, H.J., Grier, C., Moshchuk, A., King, S.T., Choudhury, P., Venter, H.: The multi-

principal os construction of the gazelle web browser. In: USENIX Security. (2009)
49. Barth, A., Jackson, C., Reis, C., Team, T.G.C.: The security architecture of the chromium

browser. http://goo.gl/BGjJqC
50. Papagiannis, I., Pietzuch, P.: Cloudfilter: practical control of sensitive data propagation to

the cloud. In: Cloud Computing Security Workshop. (2012)
51. Tong, T., Evans, D.: Guardroid: A trusted path for password entry. In: MoST. (2013)
52. McCune, J.M., Perrig, A., Reiter, M.K.: Safe passage for passwords and other sensitive data.

In: Network and Distributed System Security Symposium. (2009)
53. Zhou, Z., Gligor, V.D., Newsome, J., McCune, J.M.: Building verifiable trusted path on

commodity x86 computers. In: IEEE Symposium on Security and Privacy. (2012)
54. Ter Louw, M., Venkatakrishnan, V.N.: Blueprint: Robust prevention of cross-site scripting

attacks for existing browsers. In: IEEE Symposium on Security and Privacy. (2009)
55. Nadji, Y., Saxena, P., Song, D.: Document structure integrity: A robust basis for cross-site

scripting defense. In: Network and Distributed System Security Symposium. (2009)
56. Gundy, M.V., Chen, H.: Noncespaces: Using randomization to enforce information flow

tracking and thwart cross-site scripting attacks. In: Network and Distributed System Security
Symposium. (2009)

